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Analysis of absence of arbitrage normally ignores payoffs in states to which the
agent assigns zero probability. We extend the fundamental theorem of asset pricing
to the case of “no empty promises” in which the agent cannot promise arbitrarily
large payments in some states. There is a superpositive pricing rule that can assign
positive price to claims in zero probability states important to the market as well
as assigning positive prices to claims in the states of positive probability. With
continuous information arrival, no empty promises can be enforced by shutting
down the agent’s subsequent investments once wealth hits zero.

Dogmatic disagreements create arbitrage opportunities in competitive mar-
kets that are sufficiently complete. There may be someone in the economy
who is certain (correctly or not on objective grounds) that gold prices will
go up and someone else who believes there is a positive probability that gold
prices will go down. The first person will have an arbitrage opportunity if
at-the-money put options on gold have a positive price, while the second
person will have an arbitrage opportunity if at-the-money put options on
gold have a zero or negative price. Similarly, if some people are sure their
favorite sport teams or horses will win but others are not so sure, any odds
posted by a competitive bookmaker will imply arbitrage for one group or
the other.1 In practice, however, dogmatic differences in beliefs do not im-
ply actual arbitrage that can be used to generate arbitrarily large profits
because people have limited resources and cannot make “empty promises”
of payments that exceed their own ability to pay in states the market cares
about, even if those are states they personally believe to be impossible. The
purpose of this article is to extend the study of the absence of arbitrage to
situations in which no empty promises are permitted.

We thank Mark Loewenstein, HrvojěSikić, Jie Wu, and an anonymous referee for useful discussions. An
earlier version of this article appears in Willard’s doctoral thesis at Washington University in Saint Louis.
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1 These arbitrages are generally still present in the presence of finite spreads. Our analysis assumes strict
price-taking without a spread, but as can be seen from the analysis of Jouini and Kallal (1995), absence
of arbitrage in the presence of a spread is the same as the existence of prices within a spread that do not
admit arbitrage, and this would be true of our notion of “robust arbitrage” as well.
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The fundamental theorem of asset pricing asserts the equivalence of the
absence of arbitrage, the existence of a positive linear pricing rule, and the
existence of an optimal demand for some agent who prefers more to less.2

This result is important, for example, since it tells us that if asset price
processes admit no arbitrage, then they are consistent with equilibrium
(in a single-agent economy for the agent whose existence is ensured by
the theorem). In other words, assuming equilibrium places no more and
no less restriction on prices than assuming no arbitrage, absent additional
assumptions.

The usual presentation of the fundamental theorem of asset pricing typ-
ically ignores payoffs in states to which the agent assigns zero probabil-
ity. A linear pricing rule that attaches a positive price to a state that the
agent believes is impossible would be inconsistent with expected utility
maximization in competitive markets since selling short the corresponding
Arrow–Debreu security provides consumption now with zero probability of
future loss. On the other hand, a zero or negative state price would be incon-
sistent with utility maximization if the agent believes the state is possible
since buying the Arrow–Debreu security for some state is an arbitrage, and
a marginal purchase makes the agent better off.

Preventing an agent from making empty promises can rule out strategies
that exploit positive prices in states to which the agent assigns zero prob-
ability. We model this as a nonnegative wealth constraint that is imposed
in all states deemed to be “important” by a regulatory agency, consensus
market beliefs, or some other mechanism. The shadow price of the binding
constraint equals the price of the impossible state, restoring consistency
between linear pricing and expected utility maximization. We state a new
version of the fundamental theorem which equates absence of robust arbi-
trages (defined to be arbitrages not requiring empty promises), existence of
a superlinear pricing rule (which may give positive price to states valued
by the market even if the agent believes them impossible), and existence of
an optimum for an agent who prefers more to less and cannot make empty
promises.

A potential conceptual problem with the general analysis is one of en-
forcement: How do we ensure that an agent will choose a strategy that does
not make empty promises in states of nature that the agent believes will
never happen? Our main result on enforcement is that, whenever informa-
tion arrives continuously, the no-empty-promises condition can be enforced
by shutting down all investments for the rest of the time once the agent’s
wealth hits zero. Continuous information arrival implies that the portfolio
value is continuous and therefore must hit zero before going negative. This

2 See Ross (1978) and Dybvig and Ross (1987) for discussions of the fundamental theorem of asset pricing
in the traditional setting.
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property means that if the market halts the agent’s trading the first time
the wealth hits zero, then the wealth cannot become negative. Being able
to enforce the no-empty-promises condition using only the paths of wealth
is important because it eliminates the market’s need to know the agent’s
strategy in all important states.3 By contrast, monitoring the path of wealth
would be insufficient to enforce no empty promises if information arrival
were discontinuous (as it would be in a discrete-time model or a model
with unpredictable jumps) because the market may be unable to anticipate
whether wealth will become negative. We can compare this to the marking-
to-market process in futures markets. Daily marking to market presumably
approximates continuous information arrival in that it permits exchanges to
stop the activity of any trader who is in danger of having negative wealth,
regardless of the trader’s view of the future direction of the market. Marking-
to-market would be less effective if it were done monthly or if daily price
variation were more volatile, both of which represent more discontinuous
information arrival, requiring more margin money to complement marking
to market.

In related work, Hindy (1995) studies the viability of a pricing rule when
the agent must maintain a level of “risk-adjusted” equity. Hindy claims that
viability is equivalent to the existence of a linear pricing rule which is the
sum of two linear rules, one representing marginal utility of consumption
and the other representing the shadow price of his solvency constraint. Our
pricing rule has a similar decomposition, and dogmatic differences in beliefs
provide a natural reason for the shadow price to be nontrivial, something
absent in Hindy’s analysis. In addition, our setting allows interesting option
pricing and investment models (such as the Black–Scholes model) because
we allow unbounded consumption and investment strategies. We also allow
markets to be incomplete.

Several studies consider consumption and investment problems when
agents disagree about the possible returns of risky assets. Wu (1991) and
Pikovsky and Karatzas (1996) study optimal consumption in a model in
which an agent has logarithmic preferences and “anticipates” future asset
prices. Bergman (1996) argues that arbitrarily conditioning return processes
to lie in some range may produce arbitrage opportunities; our results sug-
gest that these arbitrages can be ruled out by a no-empty-promises condi-
tion. Loewenstein and Willard (1997) use results presented here to study
equilibrium trading strategies and prices when agents face unforeseen con-
tingencies.

3 The difference here is analogous to the difference between using expected square integrability and using
a nonnegative wealth constraint to rule out doubling strategies in a continuous-time model. Determining
expected square integrability requires the market to know the agent’s strategy in every state of nature;
by contrast, a nonnegative wealth constraint requires only knowledge of the agent’s wealth along the
observed path.

809



The Review of Financial Studies / v 12 n 41999

Section 1 contains examples that illustrate the use of the no-empty-
promises constraint. Section 2 contains the fundamental theorem of asset
pricing with no empty promises for a single-period model with a finite
number of states. Section 3 extends this result to a continuous-time model
in which returns are assumed to be general special semimartingales. In
Section 4, we show that the no-empty-promises condition can be enforced
by shutting down investments when wealth hits zero, provided returns are
continuous. Section 5 concludes.

1. Examples

We illustrate the connection between empty promises and arbitrage in a
number of discrete- and continuous-time examples. In each of our examples,
the agent has initial endowmentw > 1 and preferencesc0+ logc1, wherec0
andc1 represent current and terminal consumption, respectively. Assuming
separable linear-logarithmic utility is in no way essential for the results, but
this choice does simplify computation. The agent takes prices as given and
conditions on information available at the start of trade. General results are
given in later sections.

1.1 Single-period examples
In our first set of examples, there are three states of nature: a high stateH ,
a middle stateM , and a low stateL. Gold, the risky asset, costs 15 units of
wealth, and a riskless bond costs 10 units. Prices next period are given by
the matrix

H
M
L

 30 10
30 10
1 10

 .
The first column represents price of gold in the three states, and the second
represents the price of the riskless asset.

Example 1. An agent who believes all states are possible.We use this
example to contrast the no-empty-promises setting. Suppose that the agent
believes statesH andM each occur with probability 2/5 and stateL occurs
with probability 1/5. Here is the agent’s traditional choice problem.

Problem A. Choose portfolio weights(α1, α2) to maximize expected utility
of consumption

w − 15α1− 10α2 + 2

5
log(30α1+ 10α2)+ 2

5
log(30α1+ 10α2)

+ 1

5
log(α1+ 10α2).
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From the first-order conditions, the solution to Problem A equalsα1 =
23/525 andα2 = 6/175.

Example 2. An agent who believes a state is impossible.Here the agent
is certain gold will outperform the bond: suppose the agent believes states
H and M each occur with probability 1/2. Problem B is the traditional
consumption choice problem.

Problem B. Choose portfolio weights(α1, α2) to maximize expected utility
of consumption

w − 15α1− 10α2+ 1

2
log(30α1+ 10α2)+ 1

2
log(30α1+ 10α2).

Problem B does not have a solution because there is an arbitrage. For
example, lending 3/2 units of the bond and buying 1 unit of the gold costs
nothing but returns 15 units for sure under the agent’s beliefs. The agent
can reach any level of expected utility by undertaking enough of these net
trades. However, for each trade the agent promises to pay 14 units of wealth
in the event that stateL occurs. In using this trade to construct the arbitrage,
the agent promises to pay successively larger amounts of wealth conditional
on stateL, thus making an “empty promise” because potential losses will
eventually exceed any given initial endowment.

The following choice problem has a solution because a no-empty-
promises constraint rules out strategies that make these empty promises.

Problem C. Choose portfolio weights(α1, α2) to maximize expected utility
of consumption

w − 15α1− 10α2+ 1

2
log(30α1+ 10α2)+ 1

2
log(30α1+ 10α2)

subject to the no-empty-promises constraint given by30α1+10α2 ≥ 0 and
α1+ 10α2 ≥ 0.

The solution to Problem C isα1 = 1/14 andα2 = −1/140. The shadow
price on the binding no-empty-promises constraint (α1+ 10α2 ≥ 0) equals
15/29, the market price of the Arrow–Debreu security for the low state. The
shadow price takes up the slack between zero marginal utility and a positive
state price. Notice that the no-empty-promises constraint in this example is
weaker than a no-short-sales constraint sinceα1 can be arbitrarily negative
if α2 is positive enough to cover the position.

Here is an example to show that the no-empty-promises constraint does
not always eliminate arbitrage opportunities.

Example 3. A robust arbitrage opportunity.Suppose that the spot prices
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of gold and the riskless bond are [10, 10], and next period’s prices are
given by

H
M
L

 10 10
10 10
0 10

 .
There is a solution to the choice problem when the agent believes state
L is impossible, but there is no solution whenever the agent believes the
gold price will fall with positive probability. This is true even under the
no-empty-promises constraint because an at-the-money put option on gold
has zero cost, has nonnegative payoffs, and pays a positive amount with
positive probability.

In these examples we see that (i) there may be no arbitrage opportunities if
the agent assigns positive probabilities to all states in which portfolios of the
assets can have positive payoffs, even in the absence of a no-empty-promises
constraint; (ii) if the agent assigns some of these states zero probability,
then the resulting arbitrages may be ruled out by preventing the agent from
making empty promises; and (iii) there may be “robust” arbitrages that will
be available whether or not empty promises are permitted.

1.2 Continuous-time examples
We now demonstrate that similar conclusions hold in examples in which
the agent trades continuously over a time interval [0, T ]. In this section the
exposition is informal with a few details in footnotes; formal definitions and
proofs are given in a later section.

Uncertainty is generated by the Wiener processZ, and the risky asset has
instantaneous returnµdt + σd Zt , whereµ andσ are positive constants.
There is a riskless asset that has constant continuously compounded return
represented by the positive constantr . We assume that the local risk premium
µ− r is positive, so there is a unique state price density processρ given by

ρt = exp

(
−
(

r + 1

2
η2
)

t − ηZt

)
,

whereη = (µ− r )/σ . The current price of any random terminal payoffc1
is given byE[ρTc1].

Example 4. No advance information.This is a special case of Merton
(1971). We use the fact that markets are complete to state the traditional
consumption choice problem.4

Problem D. Choose consumption(c0, c1) to maximize c0+E[log(c1)] sub-
ject to the budget constraintw = c0+ E[ρTc1].

4 See Duffie (1992, Chapter 8) for an elementary discussion.
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The solution to Problem D isc0 = w − 1 andc1 = ρ−1
T . The trading

strategy that finances this consumption is

θt = Wt

(
µ− r

σ 2

)
,

which invests a constant proportion of wealth in the risky asset.5

Our second example considers a case of advance information.

Example 5. Advance information I.Suppose the agent conditions prior to
the start of trade on the belief that the terminal risky return will exceed
the riskless return; that is,µT + σ ZT > rT or equivalentlyZT > −ηT .
Problem E states the traditional choice problem.

Problem E. Choose(c0, c1) to maximize c0 + E[log(c1) | ZT > −ηT ]
subject to the budget constraintw = c0+ E[ρTc1].

This problem has no solution because the agent can write put options
paying only in states for whichZT is less than or equal to−ηT . This adds
current consumption without violating the budget constraint and without
decreasing expected utility. (The puts are never exercised under the agent’s
beliefs.) A problem is that states of nature to which the agent assigns zero
probability have positive market prices. As in the finite-state example, a
no-empty-promises constraint can restore the existence of a solution.

Problem F. Choose consumption(c0, c1) to maximize c0 + E[log(c1) |
ZT > −ηT ] subject to the budget constraintw = c0 + E[ρTc1] and the
no-empty-promises constraint c1 ≥ 0 almost surely (in the unconditional
probabilities).

Problem F has a solution given byc0 = w − 1 and

c1 =
{

1
N(−η√T)

ρ−1
T ZT > ηT

0 ZT ≤ ηT,

where N(·) is the cumulative distribution function of a standard normal
random variable. The trading strategy that finances this consumption is

θt = Wt

(
µ− r

σ 2
+ φ(t, Zt )

)
,

5 Our class of admissible trading strategies includes those for which each strategyθ is predictable and
expected square integrable:

E

[∫ T

0

ρ2
t θ

2
t dt

]
< +∞.

This guarantees that discounted wealth is a martingale under the risk-neutral probability measure.
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which is the strategy of the original Merton problem (Example 4) plus a
term φ which represents selling consumption when the risky asset over
the whole period falls below the riskless return. (This additional amount
is approximately zero when the risky asset’s prior returns are much larger
than the riskless return.) This term is defined by

φ(t, y) ≡
n
(

y−ηT√
T−t

)
1√
T−t

σN
(

y−ηT√
T−t

) for all t ∈ [0, T)

andφ(T, y) = 0, wheren is the density function for a standard random
normal random variable.6 As in the finite-state model, the shadow price of
the no-empty-promises constraint takes up the slack between the positive
state price density and the zero marginal utility of consumption in impossible
states.

Example 6. Advance information II.In our final example, we suppose that
the agent knows exactly the terminal price of the risky asset, sayST = 120.
Here is the traditional choice problem.

Problem G. Choose consumption(c0, c1) to maximize c0 + E[log(c1) |
ST = 120]subject to the budget constraintw = c0+ E[ρTc1].

Problem H includes the no-empty-promises constraint.

Problem H. Choose consumption(c0, c1) to maximize c0 + E[log(c1) |
ST = 120]subject to the budget constraintw = c0+ E[ρTc1] and subject
to the no-empty-promises constraint c1 ≥ 0 almost surely.

No solution exists to either problem. We demonstrate this by constructing
a “robust free lunch,” which is an arbitrage payoff in the limit that does not

6 Here is a proof that this strategy is optimal for Problem F. Define the function

h(t, y) ≡
P
(

ZT > η
√

T
∣∣ Zt = y

)
N(−η√T)

=
N( y−ηT√

T−t
)

N(−η√T)
.

The processMt ≡ h(t, Zt ) is a martingale under the agent’s prior beliefs, and Ito’s lemma implies that
d Mt = Mtσφ(t, Zt )d Zt . DefineWt ≡ ρ−1

t Mt , and note thatW0 = 1 andWT = c1, wherec1 is given in
the solution to Problem F. To show thatW is the wealth process that finances the optimal consumption,
we need to solve for the optimal trading strategy. Ito’s lemma implies

dWt = Mt dρ
−1
t + ρ−1d Mt + ρ−1Mtησφdt

= ρ−1Mt (r + η2)dt + ρ−1Mtηd Zt + ρ−1Mtσφd Zt + ρ−1Mtησφdt

= rWt dt +Wt

(
η

σ
+ φ
)
{(µ− r )dt + σd Zt }.

Comparing this to the budget equation [Equation (2)] in the continuous-time section yields the claimed
optimal portfolio strategy. This strategy satisfies the expected square integrability condition because of
theL2-isometry of stochastic integrals.
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require empty promises. This robust free lunch will exploit the agent’s belief
thatST = 120 for sure and the zero market price of this event. We construct
the robust free lunch using a sequence of butterfly spreads:7 Let 0< ε < 120
be given, and consider the payoff at maturity equal to max{0, ε−|ST−120|},
which can be constructed using a long position in twoT-maturity European
calls with an exercise price of 120 and a short position in twoT-maturity
European calls, one having an exercise price 120− ε and the other 120+ ε.
The value of the long position equals

−ε2
{

BS(120+ ε)− 2BS(120)+ BS(120− ε)
ε2

}
,

whereBS(K ) gives the Black–Scholes price of a European call with ex-
ercise priceK and maturityT . As ε decreases to 0, the bracketed term
converges to the (finite) second derivative of the Black–Scholes price with
respect to the exercise price evaluated atK = 120. The price of the spread
is O(ε2), and an agent with a fixed endowment can purchaseO(1/ε2)

spreads.8 Each spread paysε conditional onST = 120, so the portfolio’s
payoff isO(1/ε). Asε decreases to 0, the terminal payoff increases without
bound conditional onST being equal to 120, so there is no optimum, even
under the no-empty-promises constraint.

We draw the similar conclusions from the continuous-time examples as
from the finite-state examples: (i) There are no arbitrage opportunities if
the agents beliefs are positive on any event for which the state prices are
positive. (ii) A no-empty-promises constraint can rule out arbitrage if the
agent attaches zero probability to some states which have positive implicit
prices. (iii) A “robust arbitrage” exists if the agent believes that a state is
possible and it has a zero price.

2. The Single-Period Analysis

Having considered several examples which illustrate our no-empty-promises
setting, we now turn to our general results. The starting point of our anal-
ysis is the standard neoclassical choice problem with finitely many states,
no taxes or transaction costs, and possibly incomplete markets. Consistent
with the partial equilibrium spirit of arbitrage arguments, we will consider
the choice problem faced by an individual agent and will condition our
analysis on the agent’s (possibly endogenous) information at the start of the
period. An agent’s endowment includes a nonrandom nonnegative initial

7 Recall that a butterfly spread is a portfolio consisting of a short position in two call options at a given
exercise priceX and a long position in two call options, one of which has an exercise price higher than
X and one of which has an exercise price lower thanX. (This is a bet that the stock price at maturity will
be nearX.)

8 A function f (x) is O(xk) if f (x)/xk is bounded asx decreases to 0.
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endowmentω0 and random nonnegative terminal endowment represented
as a vector(ω11, . . . , ω12) of payoffs across states of nature 1, . . . , 2. (Of
course, this includes as a special case the assumption that allω1θ ’s are zero
and all endowment is received initially.) Investment opportunities are rep-
resented by an asset price vectorP and a2× N matrix X of terminal asset
payoffs. The typical entryXθn of X is the payoff of securityn in stateθ . The
agent’s beliefs are given by a vectorπ of state probabilities, nonnegative
and summing to one, and the agent’s preferences are represented by a von
Neumann–Morgenstern utility functionu(c0, c1) = u0(c0) + u1(c1), ad-
ditively separable over time and strictly increasing and continuous in both
arguments, which are initial and terminal consumption. We further require
that the domain ofu allows increases in consumption: if(c0, c1) is in the
domain ofu, then so must be(c0

′, c1
′) wheneverc0

′ ≥ c0 andc1
′ ≥ c1.

While we have assumed thatu is additively separable over time, our results
would be the same, with the same proofs, for various classes of preferences,
with or without additive separability, continuity, differentiability, concavity,
or state independence; what really matters is that we have a sufficiently rich
class in which more is preferred to less and the agent cares only about states
that happen with positive probability. The results do not get “stronger” or
“weaker” as we vary our assumptions on the class of utility functions: some
get stronger while others get weaker as we restrict the class.

The agent’s choice variable is the portfolio weight vectorα measured in
units of shares purchased. Given these assumptions, the traditional choice
problem is Problem 1.

Problem 1. Choose a vectorα of portfolio weights to maximize expected
utility of consumption

∑
θ |πθ>0πθu(ω0− Pα, ω1θ + (Xα)θ ).

We will be concerned with a choice problem with the additionalno-empty-
promisesconstraint that it is not feasible to make promises that cannot
be met in some set2∗ ⊆ {1,2, . . . , 2} of states. This is motivated by a
requirement that trading partners will not permit the agent to risk insolvency.
In some contexts, we could interpret2∗ to be the set of possible states given
consensus beliefs, or a superset of those possible states: leaving this issue
vague permits application of the analysis to circumstances in which it is not
obvious what is meant by consensus beliefs. With the no-empty-promises
condition, we have Problem 2.9

Problem 2. Choose a vectorα of portfolio weights to maximize expected
utility of consumption

∑
θ |πθ>0πθu(ω0−Pα, ω1θ+(Xα)θ ) subject to(∀θ ∈

2∗)(ω1θ + (Xα)θ ≥ 0).

9 For symmetry, it might be reasonable to impose a no-empty-promises constraint on initial consumption
as well; this would change nothing in the analysis. Similarly, putting a lower bound different from zero
on consumption in states the market cares about would not change anything.
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The traditional definition of arbitrage, given by Definition 1, depends
only on payoffs and the individual’s beliefs.

Definition 1. An arbitrageis a net tradeη in securities that pays off some-
time with positive probability(either(Xη)θ > 0 for someθ with πθ > 0
or−Pη > 0) and never has a positive probability of a loss(both−Pη ≥ 0
and(Xη)θ ≥ 0 wheneverπθ > 0).

For our current purposes, we want a new definition of arbitrage that is subject
to a no-empty-promises condition. We cannot tell from looking at a net trade
whether adding it to some proposed investment portfolio would violate the
no-empty-promises condition, but we can tell whether it would if undertaken
at large enough scale. The spirit of arbitrage is that it is inconsistent with
optimization since it is a net trade that would continue to be feasible and
improve utility at all scales and given any starting value. To remain within
this spirit, we have “robust arbitrages,” given by Definition 2.

Definition 2. A robust arbitrageis an arbitrageη satisfying the no-empty-
promises constraint(θ ∈ 2∗)⇒ ((Xη)θ ≥ 0).

Any robust arbitrage is obviously an arbitrage, but an arbitrage need not be
a robust arbitrage if there are states the market cares about but are assigned
zero probability by the agent. The arbitrage is “robust” because it is feasible
even if the agent cannot make empty promises.

A positive linear pricing ruleassigns positive price to all states with
positive probability and zero price to all other states.

Definition 3. A positive linear pricing ruleis a vectorp of state prices that
correctly prices all assets(P′ = pX), assigns positive price to those states
with positive probability((πθ > 0)⇒ (pθ > 0)), and assigns zero price to
all other states((πθ = 0)⇒ (pθ = 0)).

We need to consider asuperpositive linear pricing rulethat assigns positive
price to all states with positive probability but may assign positive price to
other states if the market cares about them.

Definition 4. A superpositive linear pricing ruleis a vector p of state
prices that correctly prices all assets(P′ = pX), assigns positive price
to those states with positive probability((πθ > 0) ⇒ (pθ > 0)), assigns
nonnegative price to all states in which empty promises are not permitted
((θ ∈ 2∗)⇒ (pθ ≥ 0)), and assigns zero price to all other states(((πθ = 0)
and(θ 6∈ 2∗))⇒ (pθ = 0)).

To understand the connection between pricing and absence of robust
arbitrages, it is useful to examine the choice problem. Under appropriate
regularity assumptions, first-order necessary and sufficient conditions to
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Problem 2 are

u′0(ω0− Pα)P =
∑
θ |πθ>0

πθu
′
1(ω1θ + (Xα)θ )Xθ +

∑
θ∈2∗

γθ Xθ

(∀θ ∈ 2∗) γθ (ω1θ + (Xα)θ ) = 0

γθ ≥ 0, ω1θ + (Xα)θ ≥ 0.

for some Lagrange multipliersγθ ,θ ∈ 2∗. If there is a solution to Problem 2,
then the vector

pθ = πθu′1(ω1θ + (Xα)θ )+ γθ
u′0(ω0− Pα)

, θ ∈ 2, (1)

forms a superpositive linear pricing rule. In an important state with positive
shadow price but zero probability for the agent, the shadow priceγθ > 0 on
the binding nonnegative wealth constraint takes up the slack between the
zero marginal utility of consumption and the positive state price.

By now we have accumulated the definitions needed to state the fun-
damental theorem of asset pricing in the single-period world with finitely
many states, both in its original version and in its new version without empty
promises.

Theorem 1. (the fundamental theorem of asset pricing).The following are
equivalent: (i) absence of arbitrage, (ii) existence of a positive linear pricing
rule, and (iii) existence of an optimum in the traditional problem (Problem 1)
for some hypothetical agent who prefers more to less.

Proof. See Dybvig and Ross (1987).

Here is the new version of the fundamental theorem of asset pricing.
While the proof follows the same broad outline as the proof of Dybvig and
Ross (1987), some details are more subtle.

Theorem 2. (the fundamental theorem of asset pricing with no empty pro-
mises).The following are equivalent: (i) absence of robust arbitrages,
(ii) existence of a superpositive linear pricing rule, and (iii) existence of
an optimum in the problem without empty promises (Problem 2) for some
hypothetical agent who prefers more to less for some endowment.

Proof. (iii) ⇒ (i): We want to show that existence of an optimum implies
absence of robust arbitrage. Suppose to the contrary that there is an opti-
mum but that there is also available a robust arbitrage. Sinceu(·, ·) is strictly
increasing in both arguments, it follows that adding the robust arbitrage to
the claimed optimum would not decrease value in any state, would increase
value in the positive-probability state (or time 0) when consumption is in-
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creased, and would not violate the no-empty-promises constraint. Therefore
it would dominate the claimed optimum, which is a contradiction.

(ii) ⇒ (iii): Given the existence of a superpositive linear pricing rule
p, we need to show that some hypothetical agent has a maximum. We
will show that a hypothetical agent with time-separable exponential von
Neumann–Morgenstern utility functionu(c0, c1) = −exp(−c0)+ log(c1)

and a carefully chosen endowment has an optimum. The endowment we
select has

ω1θ =
{
πθ/pθ when pθ > 0 andπθ > 0
0 whenpθ = 0 orπθ = 0

andω0 = 0. Then it is easy to verify thatα = 0 is an optimal portfolio
choice given this endowment using the first-order condition [Equation (1)]
previously developed, with

γθ =
{

pθ whenπθ = 0 andθ ∈ 2∗
0 otherwise.

(i) ⇒ (ii): The consumption space in our problem can be represented by
<1+2, with the first component representing the amount of consumption at
time 0 and the remaining components representing the consumptions across
states at time 1. In consumption space, letA be the set of net trades that are
candidate robust arbitrages, that is,c ≡ (c0, c11, . . . , c12) is in A if (a) both
c0 ≥ 0 andc1θ ≥ 0 for all θ with πθ > 0, (b) eitherc0 > 0 or c1θ > 0 for
someθ with πθ > 0, and (c)c1θ ≥ 0 if θ ∈ 2∗. Also in consumption space,
let M be the set of marketed net trades (ignoring the empty promise and
nonnegative consumption constraint), that is,c ≡ (c0, c11, . . . , c12) is in M
if there exists a portfolioα such thatc0 = −Pα and(c11, . . . , c12) = Xα.
We are given thatA∩M = ∅, and we want to show that there exists a state
price vectorp ∈ <2+ such that (1)P′ = pX, (2) pθ > 0 wheneverπθ > 0,
and (3)pθ = 0 wheneverπθ = 0 andθ 6∈ 2∗.

Since A and M are nonempty disjoint convex sets, there exists a dual
(price) vectorφ ∈ <1+2, φ 6= 0, such thatφa ≥ φm for all a ∈ A and
m ∈ M . We will show shortly that such aφ can be chosen to satisfyφ0 > 0
andφθ > 0 wheneverπθ > 0. In that case,p ≡ φ0

−1(φ11, . . . , φ12) will
be the required state price vector. Property (1),P′ = pX, follows from the
fact thatφ separatesM , sinceM includes the result of investment of+1 or
−1 unit of each asset individually. Property (2),pθ > 0 wheneverπθ > 0,
follows from the selection ofφ with like properties. Property (3),pθ = 0
wheneverπθ = 0 andθ 6∈ 2∗, follows from the fact thatφ separatesA,
sinceπθ = 0 implies thatA contains(1,0, . . . ,0) plus K times the unit
vector in the direction of the 1θ coordinate, for all positive and negativeK .

It remains to show that the vectorφ separatingA andM can be chosen
with φ0 > 0 andφ1θ > 0 wheneverπθ > 0. It suffices to show that we
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can choose separateφ’s to make each corresponding element (φ0 or φ1θ )
positive, since the sum of suchφ’s will still separateA and M but will
make them all positive. Fixθ with πθ > 0, and suppose there are no robust
arbitrages. (The argument forφ0 is identical; only the notation is slightly
different.) Arguing by contradiction, assume noφ separatingA andM has
φ1θ > 0. Recall that the dual to a setX ∈ <N is defined to be the convex
set X+ ∈ <N defined byX+ ≡ {y | (∀x ∈ X) yx ≥ 0}. The set ofφ’s
separatingA andM is given by the nonzero elements ofA+ ∩ (−M)+.10

Since (by our assumption in the argument by contradiction) noφ sepa-
rating M and A hasφ1θ > 0, and since noφ separatingA and M can
haveφ1θ < 0 (or it would not separateA, sinceπθ > 0), it follows that
A+ ∩ M+ ⊆ {φ | φ1θ = 0}, or equivalently,{φ | φ1θ = 0}+ ⊂ (A+ ∩
M+)+ [by property (i) of convex cones given before Karlin (1959) Theo-
rem 5.3.1]. By the duality theorem for closed convex cones [Karlin (1959),
Theorem B.3.1, parts I and II], it follows, using the usual overline notation

for set closure, that{φ | φ1θ = 0}+ ⊆ (A+∩M+)+ ⊆ M + A = M+ A =
M + A, where the first equality follows from the fact thatA is a poly-
hedral cone andM is a subspace [Rockafellar (1970), Theorem 20.3], and
the second equality comes from the fact thatM is closed. However, this
contradicts absence of robust arbitrage, since the set{φ | φ1θ = 0}+ in-
cludes the vector with all zeros except for−1 in the component 1θ , and
thereforeM includes an element ofA plus the vector of all zeros except for
1 in the component 1θ , which is itself an element ofA. This completes the
proof that (i)⇒ (ii).

3. The Continuous-Time Analysis

We now turn to the continuous-time version of the fundamental theorem
of asset pricing without empty promises. The intuition of the finite-state
results holds once we add structure to accommodate infinite-dimensional
state spaces typically used in investments and option pricing.

3.1 Definitions
The agent trades finitely many risky securities in a frictionless, competitive,
and possibly incomplete market over a trading interval [0, T ]. Security
returns are defined on a probability space(Ä,F, P), whereÄ contains the
set of states of nature and theσ -algebraF contains the events distinguishable
at timeT . The probability measureP is a reference measure and is used
only to define returns in states to which the agent may or may not assign
positive probability. We have no need to specify separately the price and

10 Since the setM of marketed net trades is a subspace,−M = M and therefore(−M)+ is the same asM+,
but this fact is not needed for the proof.
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dividend processes, so we simply assume that returns are generated by some
special semimartingale processG, as in Back (1991).11 We also assume that
there is an asset with a locally riskless instantaneous return represented by
rtdt. Return processes and their coefficients are assumed to be adapted
to a given right-continuous complete filtrationF = {Ft : t ∈ [0, T ]} that
satisfiesFT = F . Corresponding to a given trading strategyθ for the risky
assets, there is a right-continuous wealth process that satisfies

(∀t ∈ [0, T ]) Wt = W0+
∫ t

0
ruWu du+

∫ t

0
θu dGu, (2)

P almost everywhere. To ensure that the process in Equation (2) is well
defined, we assume that each trading strategy isF predictable and satisfies
integrability conditions used to define stochastic integrals. Let2 denote
the linear space of these strategies for which Equation (2) has a unique
solution.12

The agent’s beliefs are represented by a probability measurePI . We
assume thatPI is absolutely continuous relative to the reference measure
P so that, after the fact, the agent and the market agree on trading profits.13

Preferences for consumption plans(c0, c1) are represented by the expected
utility function

U (c0, c1) ≡ u0(c0)+
∫
Ä

u1(ω, c1(ω))P
I (dω),

whereu0(·) andu1(ω, ·) are continuous, increasing, and defined on<+. The
examples in Section 1 are special cases of this setting whenP is interpreted
as a weighted average of the agent’s prior and conditional beliefs.

We now define the commodity space for the agent. In infinite-state models
such as ours, the topology of the commodity space is important because it
influences the definitions of arbitrage and linear pricing. In our case, the
topology must also allow convergence in important states of nature, even if
the agent assigns them zero probability. A commodity space that is suitable
for our purposes isC ≡ < × L p(Ä,F, P), for some 1≤ p < ∞, where
L p(Ä,F, P) is the space ofP-equivalent random variables that have finite

11 A special semimartingale is a process that is uniquely representable as the sum of a predictable right-
continuous finite-variation process and a right-continuous local martingale [Dellacherie and Meyer (1982,
VII.23)]. A special semimartingale may be discontinuous.

12 Predictability requires strategies at timet to depend on information available only strictly before timet .
See Dellacherie and Meyer (1982, Chapter VIII) for conditions sufficient to define stochastic integrals
and Protter (1990, Chapter 5.3) for conditions sufficient to ensure unique solutions.

13 In discrete models, trading profits are defined sample path by sample path, and this would not be an issue,
but stochastic integrals defining trading profits in continuous time are not. Agreeing on trading profits
after the fact does seem to be a feature of the actual economy, and absolute continuity ofPI in P implies
that two agents agree on trading profits almost surely in bothP andPI . This seems like a very minimal
sort of rationality assumption for us to make.
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pth moments.14 We will take convergence and continuity to be in the product
norm topology onC.

The traditional choice problem of the agent is given in Problem 3.

Problem 3. Choose consumption(c0, c1) ∈ C to maximize expected utility
U (c0, c1) subject to the following conditions:

(a) There is a trading strategyθ ∈ 2 for which wealth satisfies Equa-
tion (2) and the conditions W0 ≤ w − c0 and c1 ≤ WT, P almost surely.

(b) c1 and W are nonnegative in states important to the agent(PI (c1 ≥
0) = 1) and((∀t ∈ [0, T ]), Wt ≥ 0), PI almost surely).15

In the no-empty-promises setting, the agent faces the additional con-
straint of being unable to make “empty promises” in some subsetÄ∗ of im-
portant states: the agent must maintain nonnegative wealth alongP almost
all pathst 7→ Wt (ω),ω ∈ Ä∗. We assume thatÄ∗ belongs to theσ -algebra
F . As in the finite-state model, the no-empty-promises constraint may be
motivated by a requirement that trading partners will not permit the agent
to risk insolvency. Notice that ifP(Ä∗) = 0, then the no-empty-promises
restriction is vacuous, and the problem would be essentially the same with
or without empty promises.

We include the no-empty-promises constraint in Problem 4.

Problem 4. Choose consumption(c0, c1) ∈ C to maximize expected utility
U (c0, c1) subject to the following conditions:

(a) There is a trading strategyθ ∈ 2 for which wealth satisfies Equa-
tion (2) and the conditions W0 ≤ w − c0 and c1 ≤ WT, P almost surely,

(b) c1 and W are nonnegative in states important to the agent(PI (c1 ≥
0) = 1) and((∀t ∈ [0, T ]), Wt ≥ 0), PI almost surely).

(c) Consumption and wealth satisfy the no-empty-promises condition
(c1 ≥ 0 and((∀t ∈ [0, T ]), Wt ≥ 0), for P almost allω ∈ Ä∗).

Unlike Problem 3, Problem 4 includes the no-empty-promises constraint
(c), which requires consumption and the paths of wealth to be nonnegative
in almost all states important to the market.

We now define a traditional arbitrage. The intuition is similar to the
finite-state setting except that a nonnegative wealth constraint is imposed
only along paths the agent cares about.

14 An additional assumption that the Radon–Nikodym derivatived PI

d P is essentially bounded would ensure
that the commodity space is consistent for all agents and any consumption plan isp integrable against
any agent’s beliefs. This assumption is satisfied, for example, in our finite-state analysis and Examples 4
and 5 of Section 1; however, we do not use this assumption in our analysis.

15 The agent can choose arbitrarily negative consumption in states occurring with zeroPI probability because
these states do not enter into the expected utility calculation.
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Definition 5. An arbitrage opportunityis a consumption plan(c0, c1) ∈ C
financed by a trading strategyθ ∈ 2 such that

(a) Wealth satisfies Equation (2) with no initial investment(c0 = −W0).
(b) Wealth is nonnegative on paths the agent believes are possible; that

is, ((∀t ∈ [0, T ]) Wt ≥ 0), PI almost surely.
(c) The agent believes that(c0, c1) is nonnegative and provides positive

consumption with positive probability; that is, [PI (c1 ≥ 0) = 1 andc0 ≥ 0]
and [eitherPI (c1 > 0) > 0 orc0 > 0].

A robust arbitrage additionally enforces the no-empty-promises condi-
tion along paths the market cares about. It is “robust” because it will be
feasible even if no empty promises are permitted.

Definition 6. A robust arbitrageis an arbitrage opportunity which satisfies
the no-empty-promises constraint:((∀t ∈ [0, T ]) Wt ≥ 0) for P almost all
ω ∈ Ä∗.

In general, we cannot tell whether adding a given net trade to some un-
known portfolio violates the nonnegative wealth or the no-empty-promises
constraint of an investor; however, we can tell if it will when undertaken
at an arbitrarily large scale. The spirit of arbitrage is that it is inconsistent
with optimization since it is a net trade which would continue to be feasible
and improve utility at all scales and given any initial feasible plan. Both
definitions of arbitrage here remain within this spirit.

In contrast to the finite-state case, the set of marketed net trades generally
is not the intersection of an affine subspace with the positive orthant due to
free disposal implicit in the financing conditionc1 ≤ WT , and more subtly,
due to suicidal strategies even ifc1 = WT holds.16 However, this set does
form a convex cone, which we denote byM . Formally, M is the convex
cone of marketed net trades ignoring nonnegative consumption constraints:
the set of(c0, c1) ∈ C such that (a) there is a trading strategyθ ∈ 2 with
W satisfying Equation (2) and the conditionsc0 ≤ −W0 andc1 ≤ WT , and
(b) the condition((∀t ∈ [0, T ]) Wt ≥ 0) holdsPI almost surely. Similarly
defineM̂ for the no-empty-promises setting by adding to (b) the condition
that((∀t ∈ [0, T ]) Wt ≥ 0) for P almost allω ∈ Ä∗.

Here is the definition of a positive linear pricing rule. In this and the
following definitions, we useL p to denote the linear spaceL p(Ä,F, P).

Definition 7. A continuous linear functionalψ : L p→ < defines a positive
linear pricing rule if it satisfies the following conditions:

(a) Each net trade(c0, c1) ∈ M has a nonpositive price equal toc0 +
ψ(c1) ≤ 0.

16 An example of a “suicidal strategy” is a doubling strategy run in reverse. A suicidal strategy is a net trade
that permits an agent to throw away wealth; see Dybvig and Huang (1989) for an analysis of doubling
and suicidal strategies in the presence of a nonnegative wealth constraint.
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(b) Any terminal consumption planc1 which the investor believes is
positive has a positive price(i.e., togetherPI (c1 > 0) > 0 andPI (c1 ≥
0) = 1 imply thatψ(c1) > 0).

(c) For any terminal consumption planc1 for which there is a feasible
trading strategyθ ∈ 2 such that wealth satisfies Equation (2) and the
conditionc1 ≤ WT , we haveψ(c1) ≤ W0.

(d) Terminal consumption plans positive only on events to which the
agent assigns zero probability are costless(i.e., (∀E ∈ F)(PI (E) = 0⇒
ψ(1E) = 0)).17

Here is the definition of a “superpositive” linear pricing rule which may
assign positive prices to important states, even to those impossible from the
agent’s perspective.

Definition 8. A continuous linear functionalψ : L p→ < defines a super-
positive linear pricing rule if it satisfies the following conditions:

(a) Any net trade(c0, c1) ∈ M has a nonpositive price equal toc0 +
ψ(c1) ≤ 0.

(b) Any terminal consumption planc1 that satisfies the no-empty-
promises condition and which the agent believes is positive has a posi-
tive terminal price(i.e., the conditionsPI (c1 > 0) > 0, PI (c1 ≥ 0) = 1,
andc1 ≥ 0 for P almost allω ∈ Ä∗ imply thatψ(c1) > 0).

(c) For anyc1 for which there is a feasible strategyθ ∈ 2 such that
wealth satisfies Equation (2) andc1 ≤ WT , we haveψ(c1) ≤ W0.

(d) Consumption plans that are positive only on events that are important
to neither the agent nor the market are costless(i.e., (∀E ∈ F)([ PI (E) =
0 & P(E ∩Ä∗) = 0]⇒ ψ(1E) = 0)).

We now formalize a notion of arbitrage in this continuous-time setting.
We will use the concept of a “free lunch” to extend the notion of arbitrage to
include continuity and free disposal.18 A free lunch differs from an arbitrage
in that a free lunch relies on the topology of the commodity space. The
trouble with a free lunch is that each consumption plan in the sequence
may be infeasible, yet the limit is called a free lunch. A free lunch will be
attractive if there exists an agent in the economy who is willing to absorb a
deviation that is “small” in the topology.19

We now define the notation that we use to define a robust free lunch. Let

17 The indicator function 1E equals 1 ifω ∈ E and 0 otherwise.
18 Absence of arbitrage is generally insufficient to guarantee the existence of a continuous linear pricing rule.

A problem is that the interior of the nonnegative orthant is empty in most interesting infinite-dimensional
spaces, thus invalidating most separating hyperplane theorems. See Ross (1978), Kreps (1981), and Back
and Pliska (1991) for more details.

19 This agent cannot be our agent because adding the topologically small deviation may cause our agent’s
consumption to lie outside the consumption set.
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A be candidate arbitrage payoffs in the traditional setting,

A ≡ {(c0, c1) ∈ C: PI (c1 ≥ 0) = 1 and [PI (c1 > 0) > 0 orc0 > 0]
}
,

and similarly defineÂ in the no-empty-promises setting to be

Â ≡ A∩ {(c0, c1) ∈ C: c1 ≥ 0 for P-almost allω ∈ Ä∗} .
Note thatA and Â are convex cones that exclude the origin. LetX denote
closure in the product norm topology for a subsetX of C. Here is a version
of arbitrage which suits our purpose.

Definition 9. A free lunchis a candidate arbitrage which is the limit of a
sequence of net trades less free disposal taken in states important to the
agent; that is, it is an element ofA ∩ (M − A). A robust free lunchis a
candidate robust arbitrage which is the limit of a similar sequence with free
disposal taken additionally in states important to the market; that is, it is an

element ofÂ∩ (M̂ − Â).

Note that a robust arbitrage is a robust free lunch. The limit of the se-
quence of portfolios of butterfly spreads in Example 6 of Section 1 is an
example of a robust free lunch. Note, however, that none of the portfolios
in the sequence is a robust arbitrage because of the (arbitrarily small but
fixed) initial wealth required to purchase the portfolio.

Free disposal in this setting allows us to consider sequences of net trades
which might otherwise become “too good” to remain in the commodity
space by freely disposing of consumption in states important to either the
agent or the market. This is needed for technical reasons: a consumption
sequence becoming larger and larger in important states may not converge
and would fail to be an arbitrage opportunity. The definition of a free lunch
captures our intuition that something dominating an arbitrage payoff in
important states also should be an arbitrage opportunity.

We now turn to our definition of optimality. Back and Pliska (1991)
suggest that something stronger than optimality is required for the existence
of an optimum for some agent to imply either continuous linear pricing or
absence of free lunches. Their suggestion applies here.20 Our final definition
provides a notion of optimality sufficient for our purpose.

Definition 10. An optimal consumption demand(c0, c1) is called astrong
optimumif it is also optimal in the closure of the set that consists of the
elements in the budget set plus net trades less free disposal.

20 This is again a problem of the empty interior of the nonnegative orthant of the commodity space. Previous
studies of the fundamental theorem often assume that preferences are continuous and defined over negative
consumption. [See, for example, Kreps (1981) and Back (1991)]. Our model requires something different
because we rule out negative consumption.
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The budget set, the set of marketed net trades, and the set of potential
arbitrage opportunities depend on whether or not the agent faces the no-
empty-promises constraint. LetB denote the budget set of consumption
satisfying (a) and (b) in the traditional choice problem (Problem 3), and let
B̂ denote the analogous budget set for Problem 4. Strong optimality in the
no-empty-promises problem, for example, requires the agent to be unable
to approximate a consumption plan providing higher expected utility than
(c0, c1) using a sequence from the setB̂+ M̂ − Â. The need to take closure
arises becausêB+ M̂ − Â may not be closed, even if the individual setsB̂,
M̂ , andÂ are.21

3.2 Results
We now have enough to state a continuous-time version of the traditional
fundamental theorem of asset pricing.

Theorem 3. (the fundamental theorem of asset pricing).The following
statements are true. (i) The absence of free lunches is equivalent to the
existence of a positive linear pricing rule. (ii) If there exists a positive
linear pricing rule, then there exists a solution to Problem 3 for some hy-
pothetical agent who prefers more to less. (iii) If there exists a solution to
Problem 3 for an agent who prefers more to less, then there are no arbitrage
opportunities. If, in addition, there is a strong optimum for Problem 3, then
there are no free lunches.

Theorem 3 can be proven by adapting the proof of our next theorem, so we
postpone the proof of Theorem 3. Here is the version of the fundamental
theorem of asset pricing that has the no-empty-promises constraint.

Theorem 4. (the fundamental theorem of asset pricing without empty
promises).The following statements are true. (i) The absence of robust
free lunches is equivalent to the existence of a superpositive linear pricing
rule. (ii) If there exists a superpositive linear pricing rule, then there exists a
solution to Problem 4 for some hypothetical agent who prefers more to less.
(iii) If there exists a solution to Problem 4 for an agent who prefers more to
less, then there are no robust arbitrage opportunities. If, in addition, there
is a strong optimum for Problem 4, then there are no robust free lunches.

Proof of Theorem 4. (i) Suppose there are no robust free lunches; by defini-

tion, this means that̂A∩(M̂ − Â) = ∅. The set of marketed net tradesM̂ and
the set of potential robust arbitrage payoffsÂ are nonempty disjoint convex
cones, so we can use the separation theorem of Clark (1993, Theorem 5)

21 The appendix of Dybvig and Huang (1989) presents an example of this in a portfolio problem, but
errors in the typesetting make the example unreadable. The original correct version is available from
Dybvig.
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to obtain a continuous linear functionalφ: C → < that strictly separates
M̂ from Â; that is,φ satisfies the condition(∀a ∈ Â)(∀m ∈ M̂) φ(m) ≤
0< φ(a).22 Let E be an arbitrary event that occurs with positivePI prob-
ability. Notice that the consumption plan(1,0), which provides one unit of
consumption today and none next period, and the consumption plan(0,1E),
which provides no consumption today and one unit next period if eventE
occurs, are potential robust arbitrage opportunities. Becauseφ separateŝA
andM̂ , the inequalitiesφ(1,0) > 0 andφ(0,1E) > 0 must hold.

We will now useφ to construct our continuous superpositive linear pric-
ing rule. Define a new continuous linear functionalφ̂ by

φ̂(c0, c1) = φ(c0, c1)

φ(1,0)
= c0φ(1,0)+ φ(0, c1)

φ(1,0)
≡ c0+ ψ(c1).

(Recall thatc0 is nonrandom andφ is linear.) It is easy to check thatφ̂ is also
a continuous linear functional that separatesM̂ from Â, so condition (a) of
Definition 8 holds. Condition (b) is true forφ, and it is true forφ̂ for the same
reasons. To verify condition (c), note that ifc1 is financed byW0, then the
consumption plan(−W0, c1) is a net trade inM̂ . Thus condition (a) implies
thatψ(c1) ≤ W0. We now need to show that condition (d) holds. LetE ∈ F
be an arbitrary event. For any given whole numbern, the consumption plan
(0, 1

n1Ä + 1E) belongs toÂ and must have a positive price; therefore,
ψ(1E) ≥ 0 by the continuity ofφ. Furthermore, note that for anyE ∈ F
with PI (E) = 0 andP(E ∩Ä∗) = 0, the consumption plan(0,1Ä+ λ1E)

belongs toÂ for all realλ. Strict separation requires the condition

ψ(1Ä + λ1E) = ψ(1Ä)+ λψ(1E) > 0 for all realλ

to hold, which would be true only ifψ(1E) = 0. Thusψ defines a continuous
superpositive linear pricing rule.

Conversely, suppose that we are given someψ that defines a superpositive
linear pricing rule; we want to show that there are no robust free lunches.
Suppose to the contrary that one exists; we will obtain a contradiction.
For m = (c0, c1) ∈ C, define the continuous linear functionalφ(m) =
c0 + ψ(c1). Our contrary hypothesis is that there exists a sequence{mn −
an} ⊂ M̂ − Â converging to somea ∈ Â. This is impossible becauseφ is
continuous and by definition must satisfy the condition(∀n) φ(mn−an) <

φ(mn) ≤ 0< φ(a). Therefore, there cannot be a robust arbitrage.
(ii) We now want to show that there exists an optimum to the consumption

choice problem of a hypothetical agent who faces a no-empty-promises
constraint, but we must develop some notation first. Letξ I define the Radon–

22 Specifically, Clark shows that two nonempty convex conesJ andK (with vertices at the origin) in a sepa-
rable Banach space (like our consumption space) can be strictly separated if and only ifJ∩ (K − J) = ∅.
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Nikodym derivatived PI /d P, and letψ be the linear functional that defines
the given superpositive linear pricing rule. The Riesz representation theorem
implies that there existsν ∈ Lq(Ä,F, P), 1/q + 1/p = 1, such that

ψ(c1) = E[νc1] for all c1 ∈ L p(Ä,F, P). (3)

Becauseψ defines a superpositive linear pricing rule,ν(ω) ≥ 0, PI almost
surely and forP almost allω ∈ Ä∗, andν(ω) > 0 if ξ I (ω) > 0.

We now demonstrate that there is a solution to Problem 4 for an agent
with initial endowmentw = 0 and state-dependent preferences

U (c0, c1) = −exp(−c0)−
∫
Ä

exp(−(y(ω)+ c1(ω)))P
I (dω),

where

y(ω) =
{

log ξ I (ω)

ν(ω)
if ξ I (ω) > 0

0 if ξ I (ω) = 0.

Consider the following new choice problem: choose(c0, c1) ∈ C to maxi-
mizeU (c0, c1) subject to the budget constraintc0+ψ(c1) = c0+E[νc1] ≤
0 and the nonnegativity conditionc1 ≥ 0, that holdsPI almost surely and
for P almost allω ∈ Ä∗. A solution to this new problem is optimal for
Problem 4 if there is a trading strategy that finances it. First-order sufficient
conditions for a solution to the new problem are

ξ I (ω)exp(−(y(ω)+ c1(ω)))+ λ1(ω) = γ ν(ω)
exp(−c0)+ λ0 = γ
γ (c0+ E[νc1)]) = 0

λ1(ω)c1(ω) = 0, andλ0c0 = 0 almost surely

for some Lagrange multipliersλ1 ∈ Lq
+ andλ0, γ ∈ <+ [see, e.g., Duffie

(1988, p. 77)]. The Lagrange multipliersλ0 andλ1 are the shadow prices for
the nonnegative constraints onc0 andc1, respectively, andγ is the marginal
utility of wealth. A solution to the new problem isc0 = 0,c1 ≡ 0,γ = 1, and
λ(ω) = ν(ω) if ξ I (ω) = 0 holds andλ(ω) = 0 otherwise. The multiplier
λ belongs toLq

+ since it satisfies 0≤ λ ≤ ν andν ∈ Lq
+, soc1, λ, andγ

satisfy the first-order and the complementary slackness conditions. This is
a solution to Problem 4 sinceθ ≡ 0 is trivially feasible and financesc1.

(iii) The existence of an optimal demand rules out robust arbitrage op-
portunities, for the net trade could be added to any candidate optimum,
increasing expected utility without violating the no-empty-promises con-
straint. If(c0, c1) is a strong optimum, then the intersection of(c0, c1)+ Â

with (B̂+ M̂ − Â)must be empty since preferences are monotonically in-
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creasing. Because(c0, c1) ∈ B̂, we haveÂ ∩ (M̂ − Â) = ∅, which is the
condition for absence of robust free lunches. This finishes our proof.

Remark: Hindy (1995) writes his pricing rule as the sum of the direct con-
tribution to expected utility and the shadow price of his solvency constraint.
In our notation, the price in Equation (3) can be written as

ψ(c1) = E
[
1{ξ I>0}νc1

]+ E
[
1{ξ I=0}νc1

] ≡ ψ I (c1)+ ψ∗(c1).

whereψ I andψ∗ are continuous linear functionals. The latter is nontrivial
whenever the no-empty-promises constraint is binding and nonvacuous (i.e.,
P({ξ I = 0}∩Ä∗}) > 0). Thusψ∗ can be interpreted as the shadow price of
the no-empty-promises constraint, analogous to Hindy’s “solvency price.”
For the examples in Section 1, the state price density in the original problem
by Merton could be used to define a superpositive linear pricing rule for an
agent who has advance information. In these examples, the linear functional
ψ∗ would be nontrivial.

We now prove Theorem 3.

Proof of Theorem 3. We make use of our work in the proof of Theorem 4.
(i) The proof of parts (a), (b), and (c) of Definition 7 is exactly the same as the
corresponding parts of Definition 8 given in the proof of Theorem 4, where
Â andM̂ are replaced byA andM , respectively. To prove part (d), note that
for any E ∈ F that satisfies the conditionPI (E) = 0, the corresponding
consumption plan(0,1Ä+λ1E) belongs toA for all realλ. Strict separation
implies that

ψ(1Ä + λ1E) = ψ(1Ä)+ λψ(1E) > 0 for all realλ,

which holds only if the conditionψ(1E) = 0 is satisfied.
(ii) This part is nearly the same, except for the absence of the no-empty-

promises constraint. However, the sets{ν(ω) > 0} and{ξ I (ω) > 0} differ
only by a nullset, so analogous first-order conditions hold at an optimum.

(iii) Apply the same argument toA andM .

4. Enforcement of No Empty Promises

A potential conceptual problem with the general analysis is one of enforce-
ment: How do we ensure that an agent chooses a strategy with nonnegative
wealth in states that the agent believes will never happen? We now show
that if information arrival is continuous, then shutting down the agent’s in-
vestments for the duration once wealth hits zero is essentially equivalent to
ruling out empty promises. With continuous information arrival, the market
knows the agent’s wealth cannot go below zero without first hitting zero.
By contrast, the wealth could jump from positive to negative without warn-
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ing in a model with discrete trading or unpredictable jumps in the return
distribution.

For simplicity, we assume that the risky assets’ instantaneous returns are
represented by

µtdt + σtd Zt ,

whereZ is a standard multidimensional Brownian motion. We follow the
usual practice of defining the filtrationF, which represents information
arrival, to be the filtration generated byZ and augmented withP nullsets;
this filtration is continuous [Karatzas and Shreve (1988, Section 2.2.7)].

Trading strategies must satisfy the conditions assumed in Section 4, in-
cluding those needed to define stochastic integrals. In particular, trading
strategies must be predictable. Modifying a strategy to stop investment
when wealth first hits zero will not violate any of these conditions, since
the time when wealth first hits zero is a stopping time.

For implementation, we want to think of two different types of stopping
times. A private version of stopping time available to the agent is the usual
definition of stopping time. In this definition it is assumed that the stochastic
process is known (in this case from knowledge of the agent’s strategy). A
public type of stopping time is one that depends on the wealth history
and not on knowledge of the agent’s particular strategy. An example of a
public stopping time is stopping when the agent’s wealth hits zero, which is
something the market can implement without knowing the agent’s strategy.
An example of a private stopping time is the last time before wealth first goes
negative (which is a stopping time because of the continuous information
arrival). A private stopping time is available to the agent (to whom the
strategy is known) for construction of an arbitrage, but not to the market’s
regulatory mechanism. Our proof of enforceability of no-empty-promises
uses stopping when wealth hits zero, which is our example of a public
stopping time.

We state a new consumption choice problem which includes a constraint
that shuts down the agent’s investment when wealth first hits zero.

Problem 5. Choose consumption(c0, c1) ∈ C to maximize expected utility
U (c0, c1) subject to the following conditions:

(a) There is a trading strategyθ ∈ 2 for which wealth satisfies Equa-
tion (2) and the conditions W0 ≤ w − c0 and c1 ≤ WT, P almost surely.

(b) c1 and W are nonnegative in states important to the agent(PI (c1 ≥
0) = 1) and((∀t ∈ [0, T ]), Wt ≥ 0), PI almost surely).

(c) The agent’s trades are shut down at the first instant that wealth
becomes zero; that is,((∀t)(Wt = 0⇒ (∀s> t)θs = Ws = 0)), PI almost
surely.

Problem 5 differs from Problem 4 only in constraint (c): the no-empty-
promises condition in Problem 4 is replaced by the shutdown constraint in
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Problem 5. In the shutdown constraint, we use the agent’s information set
since optimization is from the agent’s perspective. Nothing essential would
be changed if we required this to hold in states important to the market as
well.

We now state our main result on enforcement. It says that from the
perspective of optimal choice, the no-empty-promises constraint can be
replaced by a constraint that shuts down the agent’s investment when wealth
first hits zero.

Theorem 5.Assume that information arrival is continuous and that Prob-
lem 4 or Problem 5 has a solution. Further assume that there exists a
trading strategy giving a payoff bounded below away from zero and a pos-
itive wealth process (as there would if there exists a locally riskless asset
with a nonnegative interest rate process). Then the problems are equivalent
in the following sense:

(i) Suppose(θ,W,C) is feasible in one of Problem 4 and Problem 5. Then
define the new strategy,(θ̂ , Ŵ, Ĉ), by closing out the agent’s investments
when wealth hits zero. Let

τ =
{

min{t | Wt ≤ 0} if such a t exists
T otherwise.

Letting ∧ indicate the minimum, we definêθt ≡ θt1{t<τ }, Ŵt ≡ Wt∧τ ,
and Ĉ ≡ C1{τ<T}. This new strategy is just as desirable to the agent as
(θ,W,C) and is feasible for both problems.

(ii) There is a strategy(θ,W,C) that is a solution to both Problem 4 and
Problem 5.

We now prove Theorem 5.

Proof of Theorem 5. (i) Feasibility requireŝθ to be predictable and to satisfy
the integrability conditions needed to define stochastic integrals. It will be
predictable because it is adapted and because adapted strategies coincide
with predictable ones whenever information arrival is continuous. It will
be integrable because, by construction, integrals of the modified strategyθ̂

equal integrals of the original strategyθ up to the stopping timeτ .23 Thus
the new strategies are integrable if the original strategies are.

The statement that the two strategies are equally desirable follows from
a claim thatŴT = WT , PI almost surely, which we now show. If(θ,W,C)
is feasible for Problem 5, the claim is immediate because stopping wealth

23 The fact thatτ is a stopping time follows from the fact that optional and predictable times coincide
whenever informational arrival is continuous [see Karatzas and Shreve (1988, Problem 1.2.7)].
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is redundant on paths ofPI -positive probability given the shutdown con-
straint. To prove the claim when(θ,W,C) is feasible only in Problem 4,
we show that if it is false then there is a robust arbitrage available to the
agent, which will be a contradiction to the assumption that Problem 4 or
Problem 5 has a solution.

Suppose that the claim is false. ThePI -nonnegative wealth constraint
implies that there is aPI -positive probability setE that contains paths along
which wealth hits zero and then eventually becomes positive by timeT ; note
that 0= ŴT < WT on E. Define a new stopping timeτ ′ by inf{t |Wt < 0} if
such at exists orT otherwise. The trading strategyθt1{t∈[τ,τ ′)}, which starts
investment atτ and shuts it down when wealth first becomes negative, pays
a PI -positive amount onE and ensures that wealth satisfies no-empty-
promises (i.e., wealth is pathwise nonnegativeP almost surely). Thus we
have constructed a robust arbitrage.

The existence of the robust arbitrage immediately rules out an optimum
for Problem 4. Adding the arbitrage to an arbitrary feasible strategy in
Problem 5 may be infeasible, however, because the shutdown constraint
may stop investment before the arbitrage is complete. Thus we will rule
out a solution to Problem 5 by showing that the agent can shift a small
amount of initial wealth from the strategy to make the arbitrage available,
and for a small enough transfer the arbitrage will make it worthwhile at large
enough scale. Together these will imply a contradiction to our assumption
that Problem 4 or Problem 5 has a solution.

Let B be the payoff of a trading strategy giving a payoff bounded below
away from zero and a positive wealth process, scaled to costw0 initially.
Furthermore, letX > 0, X 6= 0 be the payoff to the arbitrage strategy as
constructed above. Using free disposal if necessary, we may assume without
loss of generality thatX is a bounded random variable. Monotonicity implies
that any terminal consumption planC in a candidate optimum will be strictly
less desirable thanC+ X; however, the latter may be infeasible, since ifC
involves wealth hitting zero, then the agent may be shut down before the
arbitrage generatingX has been played out. Letε andn be positive numbers.
The consumption plan(1 − ε)C + εB + nX, formed by shifting some
initial wealth fromC to B, is feasible because it requires initial investment
w0 and because the investment inB prevents wealth from hitting zero. If
utility U is bounded, expected utility is continuous inε andn by dominated
convergence, and forn = 1 and small enoughε, (1− ε)C + εB + X is
strictly preferred toC. If U is unbounded, then we can choosen to be large
andε (which may depend onn and can be uniformly bounded below by
an arbitrary positive number) to obtain unbounded expected utility on the
PI -positive probability set of states withX > 0. In either case, Problem 5
cannot have a solution, and our claim is proven.

(ii) By (i), just useτ to construct a new solution to the problem that is
given to have a solution.
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5. Conclusion

We have demonstrated a version of the fundamental theorem of asset pricing
when agents have dogmatic differences of opinion but are prevented from
making empty promises. The primary difference is that linear pricing will
be superpositive since a state assigned zero probability by the agent may
have a positive price if it is important to the market. Superpositive linear
pricing is reconciled with expected utility maximization by ruling out empty
promises in important states. The shadow price of the no-empty-promises
constraint takes up slack between positive state prices and zero marginal
utility. These results are proven for finite-state and continuous-time models.

With continuous information arrival, the no-empty-promises constraint
can be enforced by permanently shutting down the agent’s investments from
the time wealth first hits zero.
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