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Analysis of absence of arbitrage normally ignores payoffs in states to which the
agentassigns zero probability. We extend the fundamental theorem of asset pricing
to the case of “no empty promises” in which the agent cannot promise arbitrarily
large payments in some states. There is a superpositive pricing rule that can assign
positive price to claims in zero probability states important to the market as well
as assigning positive prices to claims in the states of positive probability. With
continuous information arrival, no empty promises can be enforced by shutting
down the agent’s subsequent investments once wealth hits zero.

Dogmatic disagreements create arbitrage opportunities in competitive mar-
kets that are sufficiently complete. There may be someone in the economy
who is certain (correctly or not on objective grounds) that gold prices will
go up and someone else who believes there is a positive probability that gold
prices will go down. The first person will have an arbitrage opportunity if
at-the-money put options on gold have a positive price, while the second
person will have an arbitrage opportunity if at-the-money put options on
gold have a zero or negative price. Similarly, if some people are sure their
favorite sport teams or horses will win but others are not so sure, any odds
posted by a competitive bookmaker will imply arbitrage for one group or
the othet In practice, however, dogmatic differences in beliefs do not im-
ply actual arbitrage that can be used to generate arbitrarily large profits
because people have limited resources and cannot make “empty promises”
of payments that exceed their own ability to pay in states the market cares
about, even if those are states they personally believe to be impossible. The
purpose of this article is to extend the study of the absence of arbitrage to
situations in which no empty promises are permitted.
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! These arbitrages are generally still present in the presence of finite spreads. Our analysis assumes strict
price-taking without a spread, but as can be seen from the analysis of Jouini and Kallal (1995), absence
of arbitrage in the presence of a spread is the same as the existence of prices within a spread that do not
admit arbitrage, and this would be true of our notion of “robust arbitrage” as well.
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The fundamental theorem of asset pricing asserts the equivalence of the
absence of arbitrage, the existence of a positive linear pricing rule, and the
existence of an optimal demand for some agent who prefers more t less.
This result is important, for example, since it tells us that if asset price
processes admit no arbitrage, then they are consistent with equilibrium
(in a single-agent economy for the agent whose existence is ensured by
the theorem). In other words, assuming equilibrium places no more and
no less restriction on prices than assuming no arbitrage, absent additional
assumptions.

The usual presentation of the fundamental theorem of asset pricing typ-
ically ignores payoffs in states to which the agent assigns zero probabil-
ity. A linear pricing rule that attaches a positive price to a state that the
agent believes is impossible would be inconsistent with expected utility
maximization in competitive markets since selling short the corresponding
Arrow—Debreu security provides consumption now with zero probability of
future loss. On the other hand, a zero or negative state price would be incon-
sistent with utility maximization if the agent believes the state is possible
since buying the Arrow—Debreu security for some state is an arbitrage, and
a marginal purchase makes the agent better off.

Preventing an agent from making empty promises can rule out strategies
that exploit positive prices in states to which the agent assigns zero prob-
ability. We model this as a nonnegative wealth constraint that is imposed
in all states deemed to be “important” by a regulatory agency, consensus
market beliefs, or some other mechanism. The shadow price of the binding
constraint equals the price of the impossible state, restoring consistency
between linear pricing and expected utility maximization. We state a new
version of the fundamental theorem which equates absence of robust arbi-
trages (defined to be arbitrages not requiring empty promises), existence of
a superlinear pricing rule (which may give positive price to states valued
by the market even if the agent believes them impossible), and existence of
an optimum for an agent who prefers more to less and cannot make empty
promises.

A potential conceptual problem with the general analysis is one of en-
forcement: How do we ensure that an agent will choose a strategy that does
not make empty promises in states of nature that the agent believes will
never happen? Our main result on enforcement is that, whenever informa-
tion arrives continuously, the no-empty-promises condition can be enforced
by shutting down all investments for the rest of the time once the agent’s
wealth hits zero. Continuous information arrival implies that the portfolio
value is continuous and therefore must hit zero before going negative. This

2 See Ross (1978) and Dybvig and Ross (1987) for discussions of the fundamental theorem of asset pricing
in the traditional setting.
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property means that if the market halts the agent’s trading the first time
the wealth hits zero, then the wealth cannot become negative. Being able
to enforce the no-empty-promises condition using only the paths of wealth
is important because it eliminates the market's need to know the agent’s
strategy in all important statéBy contrast, monitoring the path of wealth
would be insufficient to enforce no empty promises if information arrival
were discontinuous (as it would be in a discrete-time model or a model
with unpredictable jumps) because the market may be unable to anticipate
whether wealth will become negative. We can compare this to the marking-
to-market process in futures markets. Daily marking to market presumably
approximates continuous information arrival in that it permits exchanges to
stop the activity of any trader who is in danger of having negative wealth,
regardless ofthe trader’s view of the future direction of the market. Marking-
to-market would be less effective if it were done monthly or if daily price
variation were more volatile, both of which represent more discontinuous
information arrival, requiring more margin money to complement marking
to market.

In related work, Hindy (1995) studies the viability of a pricing rule when
the agent must maintain a level of “risk-adjusted” equity. Hindy claims that
viability is equivalent to the existence of a linear pricing rule which is the
sum of two linear rules, one representing marginal utility of consumption
and the other representing the shadow price of his solvency constraint. Our
pricing rule has a similar decomposition, and dogmatic differences in beliefs
provide a natural reason for the shadow price to be nontrivial, something
absent in Hindy’s analysis. In addition, our setting allows interesting option
pricing and investment models (such as the Black—Scholes model) because
we allow unbounded consumption and investment strategies. We also allow
markets to be incomplete.

Several studies consider consumption and investment problems when
agents disagree about the possible returns of risky assets. Wu (1991) and
Pikovsky and Karatzas (1996) study optimal consumption in a model in
which an agent has logarithmic preferences and “anticipates” future asset
prices. Bergman (1996) argues that arbitrarily conditioning return processes
to lie in some range may produce arbitrage opportunities; our results sug-
gest that these arbitrages can be ruled out by a no-empty-promises condi-
tion. Loewenstein and Willard (1997) use results presented here to study
equilibrium trading strategies and prices when agents face unforeseen con-
tingencies.

3 The difference here is analogous to the difference between using expected square integrability and using
a nonnegative wealth constraint to rule out doubling strategies in a continuous-time model. Determining
expected square integrability requires the market to know the agent’s strategy in every state of nature;
by contrast, a nonnegative wealth constraint requires only knowledge of the agent's wealth along the
observed path.
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Section 1 contains examples that illustrate the use of the no-empty-
promises constraint. Section 2 contains the fundamental theorem of asset
pricing with no empty promises for a single-period model with a finite
number of states. Section 3 extends this result to a continuous-time model
in which returns are assumed to be general special semimartingales. In
Section 4, we show that the no-empty-promises condition can be enforced
by shutting down investments when wealth hits zero, provided returns are
continuous. Section 5 concludes.

. Examples

We illustrate the connection between empty promises and arbitrage in a
number of discrete- and continuous-time examples. In each of our examples,
the agent has initial endowment> 1 and preferencesg+logc;, wherecy

andc; represent current and terminal consumption, respectively. Assuming
separable linear-logarithmic utility is in no way essential for the results, but
this choice does simplify computation. The agent takes prices as given and
conditions on information available at the start of trade. General results are
given in later sections.

1.1 Single-period examples

In our first set of examples, there are three states of nature: a hightstate

a middle stateMl, and a low staté.. Gold, the risky asset, costs 15 units of
wealth, and a riskless bond costs 10 units. Prices next period are given by
the matrix

H 30 10
M 30 10
L 1 10

The first column represents price of gold in the three states, and the second
represents the price of the riskless asset.

Example 1. An agent who believes all states are possille. use this
example to contrast the no-empty-promises setting. Suppose that the agent
believes statekl andM each occur with probability /5 and staté. occurs

with probability 1/5. Here is the agent’s traditional choice problem.

Problem A. Choose portfolio weight&;, a2) to maximize expected utility
of consumption

2 2
w — 1501 — 1002 + 5 l0g(30x1 + 10x2) + 5 l0g(30x1 + 10x2)

1
+ 3 log(erg + 10x2).
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From the first-order conditions, the solution to Problem A equals-
23/525 andu, = 6/175.

Example 2. An agent who believes a state is impossiblere the agent

is certain gold will outperform the bond: suppose the agent believes states
H and M each occur with probability /2. Problem B is the traditional
consumption choice problem.

Problem B. Choose portfolio weight&;, a2) to maximize expected utility
of consumption

1 1
w — 1501 — 1005 + E l0g(30r; + 100p) + E l0g(300; + 10w).

Problem B does not have a solution because there is an arbitrage. For
example, lending 3/2 units of the bond and buying 1 unit of the gold costs
nothing but returns 15 units for sure under the agent’s beliefs. The agent
can reach any level of expected utility by undertaking enough of these net
trades. However, for each trade the agent promises to pay 14 units of wealth
in the event that statie occurs. In using this trade to construct the arbitrage,
the agent promises to pay successively larger amounts of wealth conditional
on statel, thus making an “empty promise” because potential losses will
eventually exceed any given initial endowment.

The following choice problem has a solution because a no-empty-
promises constraint rules out strategies that make these empty promises.

Problem C. Choose portfolio weight&y;, a2) to maximize expected utility
of consumption

1 1
w — 1501 — 100z + 5109(3001 + 1002) + 5 10g(300 + 102)

subject to the no-empty-promises constraint giveB + 10z, > 0 and
o1+ 100, > 0.

The solution to Problem C ig; = 1/14 andu, = —1/140. The shadow
price on the binding no-empty-promises constrait{ 10« > 0) equals
15/29, the market price of the Arrow—Debreu security for the low state. The
shadow price takes up the slack between zero marginal utility and a positive
state price. Notice that the no-empty-promises constraint in this example is
weaker than a no-short-sales constraint siacean be arbitrarily negative
if a2 is positive enough to cover the position.

Here is an example to show that the no-empty-promises constraint does
not always eliminate arbitrage opportunities.

Example 3. A robust arbitrage opportunityfsuppose that the spot prices
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of gold and the riskless bond are [1A0], and next period’s prices are
given by

H 10 10
M 10 10
L 0 10

There is a solution to the choice problem when the agent believes state
L is impossible, but there is no solution whenever the agent believes the
gold price will fall with positive probability. This is true even under the
no-empty-promises constraint because an at-the-money put option on gold
has zero cost, has nonnegative payoffs, and pays a positive amount with
positive probability.

Inthese examples we see that (i) there may be no arbitrage opportunities if
the agent assigns positive probabilities to all states in which portfolios of the
assets can have positive payoffs, even in the absence of a no-empty-promises
constraint; (ii) if the agent assigns some of these states zero probability,
then the resulting arbitrages may be ruled out by preventing the agent from
making empty promises; and (iii) there may be “robust” arbitrages that will
be available whether or not empty promises are permitted.

1.2 Continuous-time examples

We now demonstrate that similar conclusions hold in examples in which
the agent trades continuously over a time intervalllp In this section the
exposition is informal with a few details in footnotes; formal definitions and
proofs are given in a later section.

Uncertainty is generated by the Wiener procésand the risky asset has
instantaneous retuadt + od Z;, whereu ando are positive constants.
There is a riskless asset that has constant continuously compounded return
represented by the positive constare assume that the local risk premium
u —r is positive, so there is a unique state price density proegssen by

1
pt = eXp(— (r + 5’72) t— ﬂzt> ,

wheren = (u —r)/o. The current price of any random terminal payaff
is given byE[prcy].

Example 4. No advance informationThis is a special case of Merton
(1971). We use the fact that markets are complete to state the traditional
consumption choice problefn.

Problem D. Choose consumptidigg, ¢1) to maximize ¢+ E[log(cz)] sub-
ject to the budget constraint = ¢y + E[pTCq].

4 See Duffie (1992, Chapter 8) for an elementary discussion.
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The solution to Problem D isg = w — 1 andc¢; = pT‘l. The trading
strategy that finances this consumption is

n—r
9:W )

which invests a constant proportion of wealth in the risky asset.
Our second example considers a case of advance information.

Example 5. Advance information ISuppose the agent conditions prior to
the start of trade on the belief that the terminal risky return will exceed
the riskless return; that igs T + o Z1 > rT or equivalentlyZr > —nT.
Problem E states the traditional choice problem.

Problem E. Choose(cy, ¢1) to maximize ¢ + E[log(cy) | Zr > —nT]
subject to the budget constraimt= ¢y + E[por1C1].

This problem has no solution because the agent can write put options
paying only in states for whicE+ is less than or equal teT. This adds
current consumption without violating the budget constraint and without
decreasing expected utility. (The puts are never exercised under the agent’s
beliefs.) A problem is that states of nature to which the agent assigns zero
probability have positive market prices. As in the finite-state example, a
no-empty-promises constraint can restore the existence of a solution.

Problem F. Choose consumptio(ty, ¢1) to maximize ¢ + E[log(cy) |
Zt > —nT] subject to the budget constraint = ¢y + E[prc1] and the
no-empty-promises constraint & 0 almost surely (in the unconditional
probabilities).

Problem F has a solution given by = w — 1 and
1 -1
o = | N P A=t
0 Zt < T,

where N (-) is the cumulative distribution function of a standard normal
random variable. The trading strategy that finances this consumption is

u

b :vw( 4o, zt)),

5 Our class of admissible trading strategies includes those for which each stfaiegyedictable and

expected square integrable:
T
E |:/ pf@fdti| < +o00.
0

This guarantees that discounted wealth is a martingale under the risk-neutral probability measure.
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which is the strategy of the original Merton problem (Example 4) plus a

term ¢ which represents selling consumption when the risky asset over
the whole period falls below the riskless return. (This additional amount

is approximately zero when the risky asset’s prior returns are much larger
than the riskless return.) This term is defined by

y—nT 1
n(F5) 7=
y—nT
oN (55)
and¢(T,y) = 0, wheren is the density function for a standard random
normal random variabl As in the finite-state model, the shadow price of
the no-empty-promises constraint takes up the slack between the positive

state price density and the zero marginal utility of consumption inimpossible
states.

o,y = forallt € [0, T)

Example 6. Advance information Ilin our final example, we suppose that
the agent knows exactly the terminal price of the risky assetSsay 120.
Here is the traditional choice problem.

Problem G. Choose consumptiofty, ¢;) to maximize ¢ + E[log(c;) |
Sr = 120]subject to the budget constraint= ¢y + E[o7C1].

Problem H includes the no-empty-promises constraint.

Problem H. Choose consumptioto, ¢;) to maximize ¢ + E[log(cy) |
Sr = 120] subject to the budget constraint= ¢y + E[p7¢1] and subject
to the no-empty-promises constrainte 0 almost surely.

No solution exists to either problem. We demonstrate this by constructing
a “robust free lunch,” which is an arbitrage payoff in the limit that does not

Here is a proof that this strategy is optimal for Problem F. Define the function

- P(zT>nﬁ| Zr=y) ~ N(D

N(—nvT) NG

The proces; = h(t, Z;) is a martingale under the agent's prior beliefs, and Ito’s lemma implies that
dM; = Mo (t, Zy)d Z;. DefineW;, = p(l M, and note that\p = 1 andW; = c;, wherec; is given in

the solution to Problem F. To show that is the wealth process that finances the optimal consumption,
we need to solve for the optimal trading strategy. Ito’s lemma implies

dW = Mdp '+ pd M, + p Mo gdt

pTIM( + P dt+ p IMnd Z + p Mo pd Z + pT Mo pdt

rWedt + W, (3 +¢> {(w—n)dt+0dZ).

Comparing this to the budget equation [Equation (2)] in the continuous-time section yields the claimed
optimal portfolio strategy. This strategy satisfies the expected square integrability condition because of
the L2-isometry of stochastic integrals.
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require empty promises. This robust free lunch will exploit the agent’s belief
thatSr = 120 for sure and the zero market price of this event. We construct
the robust free lunch using a sequence of butterfly sprebetd < ¢ < 120

be given, and consider the payoff at maturity equal tofax— | Sr — 120},
which can be constructed using a long position in 'wmaturity European
calls with an exercise price of 120 and a short position in Twmaturity
European calls, one having an exercise price-12@nd the other 128 ¢.

The value of the long position equals

g2 { BS(120+ ¢) — 2BS(120 + BS120— ¢)

g2

where B S(K) gives the Black—Scholes price of a European call with ex-
ercise priceK and maturityT. As ¢ decreases to 0, the bracketed term
converges to the (finite) second derivative of the Black—Scholes price with
respect to the exercise price evaluate{at 120. The price of the spread

is O(¢?), and an agent with a fixed endowment can purch@sg/s?)
spreads$. Each spread paysconditional onS; = 120, so the portfolio’s
payoffisO(1/¢). Ase decreases to 0, the terminal payoff increases without
bound conditional orsr being equal to 120, so there is no optimum, even
under the no-empty-promises constraint.

We draw the similar conclusions from the continuous-time examples as
from the finite-state examples: (i) There are no arbitrage opportunities if
the agents beliefs are positive on any event for which the state prices are
positive. (i) A no-empty-promises constraint can rule out arbitrage if the
agent attaches zero probability to some states which have positive implicit
prices. (i) A “robust arbitrage” exists if the agent believes that a state is
possible and it has a zero price.

. The Single-Period Analysis

Having considered several examples which illustrate our no-empty-promises
setting, we now turn to our general results. The starting point of our anal-
ysis is the standard neoclassical choice problem with finitely many states,
no taxes or transaction costs, and possibly incomplete markets. Consistent
with the partial equilibrium spirit of arbitrage arguments, we will consider
the choice problem faced by an individual agent and will condition our
analysis on the agent’s (possibly endogenous) information at the start of the
period. An agent’s endowment includes a nonrandom nonnegative initial

7 Recall that a butterfly spread is a portfolio consisting of a short position in two call options at a given
exercise priceX and a long position in two call options, one of which has an exercise price higher than
X and one of which has an exercise price lower thaifThis is a bet that the stock price at maturity will
be nearX.)

8 A function f (x) is O(x¥) if f(x)/x* is bounded ax decreases to 0.
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endowmentyg and random nonnegative terminal endowment represented
as a vectolwss, . . . , w1¢) Of payoffs across states of nature 1, ©. (Of
course, this includes as a special case the assumption thaj'alare zero
and all endowment is received initially.) Investment opportunities are rep-
resented by an asset price vediband a® x N matrix X of terminal asset
payoffs. The typical entry{y, of X is the payoff of security in statef. The
agent’s beliefs are given by a vectorof state probabilities, nonnegative
and summing to one, and the agent’s preferences are represented by a von
Neumann—-Morgenstern utility functiam(cy, ¢;) = ug(Co) + uz(c1), ad-
ditively separable over time and strictly increasing and continuous in both
arguments, which are initial and terminal consumption. We further require
that the domain ofi allows increases in consumption:(if, ¢;) is in the
domain ofu, then so must bécy’, c;’) whenevercy’ > ¢y andcy’ > c;.
While we have assumed thats additively separable over time, our results
would be the same, with the same proofs, for various classes of preferences,
with or without additive separability, continuity, differentiability, concavity,
or state independence; what really matters is that we have a sulfficiently rich
class in which more is preferred to less and the agent cares only about states
that happen with positive probability. The results do not get “stronger” or
“weaker” as we vary our assumptions on the class of utility functions: some
get stronger while others get weaker as we restrict the class.

The agent’s choice variable is the portfolio weight vectaneasured in
units of shares purchased. Given these assumptions, the traditional choice
problem is Problem 1.

Problem 1. Choose a vectos of portfolio weights to maximize expected
utility of consumptionzelm>0 ToU(wo — Pa, wig + (Xat)g).

We will be concerned with a choice problem with the additiomalempty-
promisesconstraint that it is not feasible to make promises that cannot
be met in some sad* C {1, 2,..., ®} of states. This is motivated by a
requirement that trading partners will not permit the agent to risk insolvency.

In some contexts, we could interpr@t to be the set of possible states given
consensus beliefs, or a superset of those possible states: leaving this issue
vague permits application of the analysis to circumstances in which it is not
obvious what is meant by consensus beliefs. With the no-empty-promises
condition, we have Problem?.

Problem 2. Choose a vectow of portfolio weights to maximize expected
utility ofconsumptior{jemwm U(wo— Pa, wyy+(Xa)g) subjecttqVvo e
O*) (w1 + (Xa)g > 0).

For symmetry, it might be reasonable to impose a no-empty-promises constraint on initial consumption
as well; this would change nothing in the analysis. Similarly, putting a lower bound different from zero
on consumption in states the market cares about would not change anything.
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The traditional definition of arbitrage, given by Definition 1, depends
only on payoffs and the individual’s beliefs.

Definition 1. An arbitrageis a net trade in securities that pays off some-
time with positive probabilityeither(Xn), > 0 for somed with 7y > 0
or —Pn > 0) and never has a positive probability of a Igbsth—P#n > 0
and(Xn)e > 0 wheneverr, > 0).

For our current purposes, we want a new definition of arbitrage thatis subject
to a no-empty-promises condition. We cannot tell from looking at a net trade
whether adding it to some proposed investment portfolio would violate the
no-empty-promises condition, but we can tell whether it would if undertaken
at large enough scale. The spirit of arbitrage is that it is inconsistent with
optimization since it is a net trade that would continue to be feasible and
improve utility at all scales and given any starting value. To remain within
this spirit, we have “robust arbitrages,” given by Definition 2.

Definition 2. A robust arbitrageis an arbitragey satisfying the no-empty-
promises constrain® € 0*) = ((Xn)s > 0).

Any robust arbitrage is obviously an arbitrage, but an arbitrage need not be
a robust arbitrage if there are states the market cares about but are assigned
zero probability by the agent. The arbitrage is “robust” because itis feasible
even if the agent cannot make empty promises.

A positive linear pricing ruleassigns positive price to all states with
positive probability and zero price to all other states.

Definition 3. A positive linear pricing rulds a vectorp of state prices that
correctly prices all asset$’ = p X), assigns positive price to those states
with positive probability((zs > 0) = (ps > 0)), and assigns zero price to
all other stateg(mry = 0) = (py = 0)).

We need to considersauperpositive linear pricing ruléhat assigns positive
price to all states with positive probability but may assign positive price to
other states if the market cares about them.

Definition 4. A superpositive linear pricing rulés a vectorp of state
prices that correctly prices all asséf®’ = pX), assigns positive price

to those states with positive probabilityrs > 0) = (py > 0)), assigns
nonnegative price to all states in which empty promises are not permitted
((6 € ®*) = (py = 0)), and assigns zero price to all other stdtes, = 0)
and(¢ ¢ ©*)) = (ps = 0)).

To understand the connection between pricing and absence of robust
arbitrages, it is useful to examine the choice problem. Under appropriate
regularity assumptions, first-order necessary and sufficient conditions to
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Problem 2 are

Up(wo — Pa)P = > mouy(wip + (Xa)g)Xo + D 1 Xo
0|me>0 fe®*
(V0 € ©Y) Yo (@1 + (Xa)g) =0
Yo =0, w1+ (Xa)y > 0.

for some Lagrange multipliess, 6 € ®*. Ifthere is a solutionto Problem 2,
then the vector

Uy (w1e + (Xar)g) + vp
= , 0 €0, 1
Po Up(wo — Pa) € (@)

forms a superpositive linear pricing rule. In an important state with positive
shadow price but zero probability for the agent, the shadow pgice 0 on

the binding nonnegative wealth constraint takes up the slack between the
zero marginal utility of consumption and the positive state price.

By now we have accumulated the definitions needed to state the fun-
damental theorem of asset pricing in the single-period world with finitely
many states, both inits original version and in its new version without empty
promises.

Theorem 1. (the fundamental theorem of asset pricirif)e following are
equivalent: (i) absence of arbitrage, (ii) existence of a positive linear pricing
rule, and (iii) existence of an optimum in the traditional problem (Problem 1)
for some hypothetical agent who prefers more to less.

Proof. See Dybvig and Ross (1987). =

Here is the new version of the fundamental theorem of asset pricing.
While the proof follows the same broad outline as the proof of Dybvig and
Ross (1987), some details are more subtle.

Theorem 2. (the fundamental theorem of asset pricing with no empty pro-
mises). The following are equivalent: (i) absence of robust arbitrages,
(ii) existence of a superpositive linear pricing rule, and (iii) existence of
an optimum in the problem without empty promises (Problem 2) for some
hypothetical agent who prefers more to less for some endowment.

Proof. (iii) = (i): We want to show that existence of an optimum implies
absence of robust arbitrage. Suppose to the contrary that there is an opti-
mum but that there is also available a robust arbitrage. $iace is strictly
increasing in both arguments, it follows that adding the robust arbitrage to
the claimed optimum would not decrease value in any state, would increase
value in the positive-probability state (or time 0) when consumption is in-
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creased, and would not violate the no-empty-promises constraint. Therefore
it would dominate the claimed optimum, which is a contradiction.

(i) = (iii): Given the existence of a superpositive linear pricing rule
p, we need to show that some hypothetical agent has a maximum. We
will show that a hypothetical agent with time-separable exponential von
Neumann—Morgenstern utility functian(cy, ¢;) = — exp(—cp) + log(cz)
and a carefully chosen endowment has an optimum. The endowment we
select has

o/ pe whenp, > 0 andry > 0
@1 =10 whenpy =0ormy =0

andwg = 0. Then it is easy to verify that = 0 is an optimal portfolio
choice given this endowment using the first-order condition [Equation (1)]
previously developed, with

) pe whenmy = 0 andfd € ®©*
Y =10 otherwise.

(i) = (ii): The consumption space in our problem can be represented by
RO, with the first component representing the amount of consumption at
time 0 and the remaining components representing the consumptions across
states at time 1. In consumption space Adte the set of net trades that are
candidate robust arbitrages, thatdss (co, C11, ..., C1e) isin Aif (a) both
Co > 0 andcyy > O for all 6 with 7y > 0, (b) eithercy > 0 orcyy > 0 for
somed with ry > 0, and (c)yy > 0if 6 € ®*. Also in consumption space,
let M be the set of marketed net trades (ignoring the empty promise and
nonnegative consumption constraint), thatiss (co, €11, ..., Cig)isinM
if there exists a portfolia such thaty = —Pa and(cyy, .. ., Cig) = Xa.

We are given thaB N M = ¢, and we want to show that there exists a state
price vectorp € %9 such that (1P’ = pX, (2) ps > 0 wheneverr, > 0,
and (3)ps = 0 wheneverr, = 0 andd ¢ ©*.

Since A and M are nonempty disjoint convex sets, there exists a dual
(price) vectorp € RO, ¢ £ 0, such thatpa > ¢m for alla € A and
m € M. We will show shortly that such@ can be chosen to satisfy > 0
and¢y > 0 wheneverry > 0. In that casep = b0 NP1, - . ., Pre) Will
be the required state price vector. Property )= p X, follows from the
fact thatp separate$/, sinceM includes the result of investment #flL or
—1 unit of each asset individually. Property (2), > 0 wheneverr, > 0,
follows from the selection o with like properties. Property (3 = 0
wheneverry = 0 andd ¢ ©*, follows from the fact thatp separated,
sincerry = 0 implies thatA contains(l, 0, ..., 0) plus K times the unit
vector in the direction of thedlcoordinate, for all positive and negatite

It remains to show that the vectgrseparatingA andM can be chosen
with ¢9 > 0 and¢y > 0 wheneverry > 0. It suffices to show that we
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can choose separages to make each corresponding elemepy ¢r ¢19)
positive, since the sum of sughis will still separate A and M but will
make them all positive. Fig with 7, > 0, and suppose there are no robust
arbitrages. (The argument f@g is identical; only the notation is slightly
different.) Arguing by contradiction, assume gigeparatingA andM has

¢19 > 0. Recall that the dual to a s¥t € %N is defined to be the convex
setXt e RN defined byX™ = {y | (Vx € X)yx > 0}. The set ofp’s
separatingA and M is given by the nonzero elements Af N (—M)*.10
Since (by our assumption in the argument by contradiction) reepa-
rating M and A has¢yy > 0, and since n@ separatingA and M can
have¢yy < 0 (or it would not separatd, sincer, > 0), it follows that

AT N MT C {¢ | ¢19 = 0}, or equivalently{¢ | ¢1p» = 0" C (AT N
M™*)* [by property (i) of convex cones given before Karlin (1959) Theo-
rem 5.3.1]. By the duality theorem for closed convex cones [Karlin (1959),
Theorem B.3.1, parts | and I1], it follows, using the usual overline notation
for set closure, thdi | g1 = 0}t € (AFfNMHTC M+ A=M+A=

M + A, where the first equality follows from the fact thatis a poly-
hedral cone and!/ is a subspace [Rockafellar (1970), Theorem 20.3], and
the second equality comes from the fact thatis closed. However, this
contradicts absence of robust arbitrage, since thé¢¢sétg,, = 0} in-
cludes the vector with all zeros except fed in the componentd, and
thereforeM includes an element & plus the vector of all zeros except for

1 in the componentd, which is itself an element 0. This completes the
proof that (i)= (ii). u

. The Continuous-Time Analysis

We now turn to the continuous-time version of the fundamental theorem
of asset pricing without empty promises. The intuition of the finite-state
results holds once we add structure to accommodate infinite-dimensional
state spaces typically used in investments and option pricing.

3.1 Definitions

The agent trades finitely many risky securities in a frictionless, competitive,
and possibly incomplete market over a trading intervalT[p Security
returns are defined on a probability spage F, P), whereQ2 contains the
setof states of nature and thealgebraF contains the events distinguishable

at time T. The probability measur® is a reference measure and is used
only to define returns in states to which the agent may or may not assign
positive probability. We have no need to specify separately the price and

10 Since the seM of marketed net trades is a subspae®) = M and thereforé—M)* is the same aM ™,
but this fact is not needed for the proof.
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dividend processes, so we simply assume that returns are generated by some
special semimartingale proceSsas in Back (19913 We also assume that

there is an asset with a locally riskless instantaneous return represented by
redt. Return processes and their coefficients are assumed to be adapted
to a given right-continuous complete filtratibnh= {F;: t € [0, T]} that
satisfiesFr = F. Corresponding to a given trading strategfor the risky
assets, there is a right-continuous wealth process that satisfies

t t
(vt € [0, T]) vvt=wo+/ ruWudu+/ 6, dGy, )
0 0

P almost everywhere. To ensure that the process in Equation (2) is well
defined, we assume that each trading strate@ypeedictable and satisfies
integrability conditions used to define stochastic integrals.d.etenote

the linear space of these strategies for which Equation (2) has a unique
solution??

The agent’s beliefs are represented by a probability meaBtiréVe
assume thaP' is absolutely continuous relative to the reference measure
P so that, after the fact, the agent and the market agree on trading ptofits.
Preferences for consumption plaies, ¢;) are represented by the expected
utility function

U (Co, €1) = Ug(Co) + / U1 (@, (@) P! (dw),
Q

whereug(-) andui (w, -) are continuous, increasing, and definechan The
examples in Section 1 are special cases of this setting Wheimterpreted
as a weighted average of the agent’s prior and conditional beliefs.

We now define the commodity space for the agent. Ininfinite-state models
such as ours, the topology of the commaodity space is important because it
influences the definitions of arbitrage and linear pricing. In our case, the
topology must also allow convergence in important states of nature, even if
the agent assigns them zero probability. A commaodity space that is suitable
for our purposes i€ = % x LP(Q, F, P), for some 1< p < oo, where
LP(Q2, F, P) is the space oP-equivalent random variables that have finite

11 A special semimartingale is a process that is uniquely representable as the sum of a predictable right-
continuous finite-variation process and a right-continuous local martingale [Dellacherie and Meyer (1982,
VII.23)]. A special semimartingale may be discontinuous.

12 predictability requires strategies at timto depend on information available only strictly before titne
See Dellacherie and Meyer (1982, Chapter VIII) for conditions sufficient to define stochastic integrals
and Protter (1990, Chapter 5.3) for conditions sufficient to ensure unique solutions.

13 |n discrete models, trading profits are defined sample path by sample path, and this would not be an issue,
but stochastic integrals defining trading profits in continuous time are not. Agreeing on trading profits
after the fact does seem to be a feature of the actual economy, and absolute contiRUiiy 8fimplies
that two agents agree on trading profits almost surely in Bo#tmd P'. This seems like a very minimal
sort of rationality assumption for us to make.
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pth moments* We will take convergence and continuity to be in the product
norm topology orc.
The traditional choice problem of the agent is given in Problem 3.

Problem 3. Choose consumptia(ty, ¢;) € C to maximize expected utility
U (co, 1) subject to the following conditions:
(a) There is a trading strateg§ € © for which wealth satisfies Equa-
tion (2) and the conditions Y< w — cp and g < Wy, P almost surely.
(b) ¢, and W are nonnegative in states important to the agenhic; >
0) = 1) and((Vt € [0, T]), W, > 0), P' almost surely.*®

In the no-empty-promises setting, the agent faces the additional con-
straint of being unable to make “empty promises” in some subsef im-
portant states: the agent must maintain nonnegative wealth Rl@hgost
all pathst — W, (w), w € Q*. We assume tha&e* belongs to ther-algebra
F. As in the finite-state model, the no-empty-promises constraint may be
motivated by a requirement that trading partners will not permit the agent
to risk insolvency. Notice that iP(Q2*) = 0, then the no-empty-promises
restriction is vacuous, and the problem would be essentially the same with
or without empty promises.

We include the no-empty-promises constraint in Problem 4.

Problem 4. Choose consumptiafty, ¢1) € C to maximize expected utility
U (cg, €1) subject to the following conditions:

(a) There is a trading strategy € ® for which wealth satisfies Equa-
tion (2) and the conditions YW< w — cp and g < Wy, P almost surely,

(b) ¢p and W are nonnegative in states important to the agenhic; >
0) = 1) and((Vt € [0, T]), W, > 0), P' almost surely.

(c) Consumption and wealth satisfy the no-empty-promises condition
(c1 = 0and((vt € [0, T], W; = 0), for P almost allw € 2*).

Unlike Problem 3, Problem 4 includes the no-empty-promises constraint
(c), which requires consumption and the paths of wealth to be nonnegative
in almost all states important to the market.

We now define a traditional arbitrage. The intuition is similar to the

finite-state setting except that a nonnegative wealth constraint is imposed
only along paths the agent cares about.

4 An additional assumption that the Radon—Nikodym deriva%j,—ﬁgpt is essentially bounded would ensure
that the commodity space is consistent for all agents and any consumption jplantégrable against
any agent’s beliefs. This assumption is satisfied, for example, in our finite-state analysis and Examples 4
and 5 of Section 1; however, we do not use this assumption in our analysis.

15 The agent can choose arbitrarily negative consumption in states occurring witt' zenabability because
these states do not enter into the expected utility calculation.
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Definition 5. An arbitrage opportunityis a consumption plafcy, ¢;) € C
financed by a trading strategye ® such that

(a) Wealth satisfies Equation (2) with no initial investmeéagt= —Wp).

(b) Wealth is nonnegative on paths the agent believes are possible; that
is, (Vt € [0, T]) W, > 0), P' almost surely.

(c) The agent believes théty, ¢1) is nonnegative and provides positive
consumption with positive probability; thatig?[ (c; > 0) = 1 andcy > 0]
and [eitherP' (c; > 0) > 0 orcy > 0].

A robust arbitrage additionally enforces the no-empty-promises condi-
tion along paths the market cares about. It is “robust” because it will be
feasible even if no empty promises are permitted.

Definition 6. A robust arbitrages an arbitrage opportunity which satisfies
the no-empty-promises constraintyt € [0, T]) W; > 0) for P almost alll
w € Q*.

In general, we cannot tell whether adding a given net trade to some un-
known portfolio violates the nonnegative wealth or the no-empty-promises
constraint of an investor; however, we can tell if it will when undertaken
at an arbitrarily large scale. The spirit of arbitrage is that it is inconsistent
with optimization since it is a net trade which would continue to be feasible
and improve utility at all scales and given any initial feasible plan. Both
definitions of arbitrage here remain within this spirit.

In contrast to the finite-state case, the set of marketed net trades generally
is not the intersection of an affine subspace with the positive orthant due to
free disposal implicit in the financing conditi@n < Wr, and more subtly,
due to suicidal strategies evercif = Wy holds® However, this set does
form a convex cone, which we denote B. Formally, M is the convex
cone of marketed net trades ignoring nonnegative consumption constraints:
the set of(cy, €1) € C such that (a) there is a trading strateégyg © with
W satisfying Equation (2) and the conditiogs< —Wp andc; < Wy, and
(b) the condition((Vt € [0, T]) W; > 0) holdsP' almost surely. Similarly
defineM for the no-empty-promises setting by adding to (b) the condition
that((vt € [0, T]) W, > 0) for P almost allw € Q*.

Here is the definition of a positive linear pricing rule. In this and the
following definitions, we usé. P to denote the linear spate€’ (2, F, P).

Definition 7. A continuous linear functionaf: LP — 9% defines a positive
linear pricing rule if it satisfies the following conditions:

(a) Each net tradécp, c1) € M has a nonpositive price equal ¢tg +
¥(c) <0.

16 An example of a “suicidal strategy” is a doubling strategy run in reverse. A suicidal strategy is a net trade
that permits an agent to throw away wealth; see Dybvig and Huang (1989) for an analysis of doubling
and suicidal strategies in the presence of a nonnegative wealth constraint.
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(b) Any terminal consumption plao; which the investor believes is
positive has a positive pricg.e., togetheP' (c; > 0) > 0 andP' (c; >
0) = 1 imply thaty (c;) > 0).

(c) For any terminal consumption plan for which there is a feasible
trading strategyy € © such that wealth satisfies Equation (2) and the
conditionc; < Wy, we havey (c1) < Wp.

(d) Terminal consumption plans positive only on events to which the
agent assigns zero probability are costléss, (VE € F)(P'(E) = 0=
¥(1e) = 0)."

Here is the definition of a “superpositive” linear pricing rule which may
assign positive prices to important states, even to those impossible from the
agent’s perspective.

Definition 8. A continuous linear functional: LP — % defines a super-
positive linear pricing rule if it satisfies the following conditions:

(&) Any net trade(co, ¢1) € M has a nonpositive price equal ¢g +
Y(c) <0.

(b) Any terminal consumption plai; that satisfies the no-empty-
promises condition and which the agent believes is positive has a posi-
tive terminal price(i.e., the conditiond®' (c; > 0) > 0, P'(c; > 0) = 1,
andc; > 0 for P almost allw € Q* imply thaty(c1) > 0).

(c) For anyc; for which there is a feasible strategye ® such that
wealth satisfies Equation (2) aod < Wy, we havey (c1) < Wp.

(d) Consumption plans that are positive only on events that are important
to neither the agent nor the market are costiess, (YE € F)([P' (E) =
0& P(ENQ*) =0]= v(1g) = 0)).

We now formalize a notion of arbitrage in this continuous-time setting.
We will use the concept of a “free lunch” to extend the notion of arbitrage to
include continuity and free dispos&lA free lunch differs from an arbitrage
in that a free lunch relies on the topology of the commodity space. The
trouble with a free lunch is that each consumption plan in the sequence
may be infeasible, yet the limit is called a free lunch. A free lunch will be
attractive if there exists an agent in the economy who is willing to absorb a
deviation that is “small” in the topolog}y

We now define the notation that we use to define a robust free lunch. Let

7 The indicator function & equals 1 ifw € E and 0 otherwise.

18 Absence of arbitrage is generally insufficient to guarantee the existence of a continuous linear pricing rule.
A problem is that the interior of the nonnegative orthant is empty in most interesting infinite-dimensional
spaces, thus invalidating most separating hyperplane theorems. See Ross (1978), Kreps (1981), and Back
and Pliska (1991) for more details.

19 This agent cannot be our agent because adding the topologically small deviation may cause our agent's
consumption to lie outside the consumption set.
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A be candidate arbitrage payoffs in the traditional setting,

A={(co,c1) €C: P'(c1=0)=1andP'(c; > 0) > 0orgy > 0]},
and similarly defineA in the no-empty-promises setting to be
A= An{(co, 1) € C: c; > O for P-almost allw € Q*} .

Note thatA and A are convex cones that exclude the origin. Xetlenote
closure in the product norm topology for a subXetf C. Here is a version
of arbitrage which suits our purpose.

Definition 9. A free lunchis a candidate arbitrage which is the limit of a
sequence of net trades less free disposal taken in states important to the
agent; that is, it is an element &N (M — A). A robust free lunchs a
candidate robust arbitrage which is the limit of a similar sequence with free
disposal taken additionally in states important to the market; that is, it is an

element ofAN (M — A).

Note that a robust arbitrage is a robust free lunch. The limit of the se-
guence of portfolios of butterfly spreads in Example 6 of Section 1 is an
example of a robust free lunch. Note, however, that none of the portfolios
in the sequence is a robust arbitrage because of the (arbitrarily small but
fixed) initial wealth required to purchase the portfolio.

Free disposal in this setting allows us to consider sequences of net trades
which might otherwise become “too good” to remain in the commaodity
space by freely disposing of consumption in states important to either the
agent or the market. This is needed for technical reasons: a consumption
sequence becoming larger and larger in important states may not converge
and would fail to be an arbitrage opportunity. The definition of a free lunch
captures our intuition that something dominating an arbitrage payoff in
important states also should be an arbitrage opportunity.

We now turn to our definition of optimality. Back and Pliska (1991)
suggest that something stronger than optimality is required for the existence
of an optimum for some agent to imply either continuous linear pricing or
absence of free lunches. Their suggestion appliesf@ar final definition
provides a notion of optimality sufficient for our purpose.

Definition 10. An optimal consumption deman(dy, c;) is called astrong
optimumif it is also optimal in the closure of the set that consists of the
elements in the budget set plus net trades less free disposal.

20 This is again a problem of the empty interior of the nonnegative orthant of the commodity space. Previous
studies of the fundamental theorem often assume that preferences are continuous and defined over negative
consumption. [See, for example, Kreps (1981) and Back (1991)]. Our model requires something different
because we rule out negative consumption.

825



The Review of Financial Studié v 12 n 41999

The budget set, the set of marketed net trades, and the set of potential
arbitrage opportunities depend on whether or not the agent faces the no-
empty-promises constraint. L& denote the budget set of consumption
satisfying (a) and (b) in the traditional choice problem (Problem 3), and let
B denote the analogous budget set for Problem 4. Strong optimality in the
no-empty-promises problem, for example, requires the agent to be unable
to approximate a consumption plan prowdmg higher expected utility than
(Cp, C1) USiNg & sequence from the &4 M — A. The need to take closure
arises because + M — A may not be closed, even if the individual seis
M, and A are?!

3.2 Results
We now have enough to state a continuous-time version of the traditional
fundamental theorem of asset pricing.

Theorem 3. (the fundamental theorem of asset pricinghe following
statements are true. (i) The absence of free lunches is equivalent to the
existence of a positive linear pricing rule. (ii) If there exists a positive
linear pricing rule, then there exists a solution to Problem 3 for some hy-
pothetical agent who prefers more to less. (iii) If there exists a solution to
Problem 3 for an agent who prefers more to less, then there are no arbitrage
opportunities. If, in addition, there is a strong optimum for Problem 3, then
there are no free lunches.

Theorem 3 can be proven by adapting the proof of our next theorem, so we
postpone the proof of Theorem 3. Here is the version of the fundamental
theorem of asset pricing that has the no-empty-promises constraint.

Theorem 4. (the fundamental theorem of asset pricing without empty
promises).The following statements are true. (i) The absence of robust
free lunches is equivalent to the existence of a superpositive linear pricing
rule. (i) If there exists a superpositive linear pricing rule, then there exists a
solution to Problem 4 for some hypothetical agent who prefers more to less.
(iii) If there exists a solution to Problem 4 for an agent who prefers more to
less, then there are no robust arbitrage opportunities. If, in addition, there
is a strong optimum for Problem 4, then there are no robust free lunches.

Proof of Theorem 4 (i) Suppose there are no robust free lunches; by defini-

tion, this means thaAn(M — A) = 1. The set of marketed net tradésand
the set of potential robust arbitrage payoiare nonempty disjoint convex
cones, so we can use the separation theorem of Clark (1993, Theorem 5)

21 The appendix of Dybvig and Huang (1989) presents an example of this in a portfolio problem, but
errors in the typesetting make the example unreadable. The original correct version is available from
Dybvig.
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to obtain a continuous linear functional ¢ — N that strictly separates
M from A; that is,¢ satisfies the conditiotva € A)(Ym e M) ¢(m) <
0 < ¢(a).?? Let E be an arbitrary event that occurs with positRé prob-
ability. Notice that the consumption pld, 0), which provides one unit of
consumption today and none next period, and the consumptio(lag),
which provides no consumption today and one unit next period if ezent
occurs, are potential robust arbitrage opportunities. Becassparated\
andM, the inequalitieg (1, 0) > 0 and¢ (0, 1¢) > 0 must hold.

We will now useg to construct our continuous superpositive linear pric-
ing rule. Define a new continuous linear functiorpaby

¢(Co,C1) _ Cop(L,0) +¢(0 c)
(1,0 ¢(1,0)

(Recall thaty is nonrandom and is linear.) It is easy to check thatis also
a continuous linear functional that separa¥$rom A, so condition (a) of
Definition 8 holds. Condition (b) is true fgr, and it is true fog for the same
reasons. To verify condition (c), note thatifis financed by\y, then the
consumption plaii—Wo, ¢1) is a net trade itM. Thus condition (a) implies
thaty (c1) < Wp. We now need to show that condition (d) holds. Eeg F
be an arbitrary event. For any given whole numipghe consumption plan
(0, %19 + 1g) belongs toA and must have a positive price; therefore,
¥ (1g) > 0 by the continuity okp. Furthermore, note that for arly € F
with P' (E) = 0 andP(E N Q*) = 0, the consumption plaf®, 1o + Alg)
belongs toA for all real. Strict separation requires the condition

$(Co, €1) = = Co + ¥ (C).

V(lg + Ag) = v (lg) + Ay (1) > 0 for all realx

to hold, which would be true only if (1g) = 0. Thusyr defines a continuous
superpositive linear pricing rule.

Conversely, suppose that we are given sgntieat defines a superpositive
linear pricing rule; we want to show that there are no robust free lunches.
Suppose to the contrary that one exists; we will obtain a contradiction.
Form = (cy, c1) € C, define the continuous linear functionalm) =
Co + ¥ (c1). Our contrary hypothesis is that there exists a sequénge-

a,} C M — A converging to soma € A. This is impossible becauggeis
continuous and by definition must satisfy the conditign) ¢ (m, — a,) <
¢(my) < 0 < ¢(a). Therefore, there cannot be a robust arbitrage.

(i) We now want to show that there exists an optimum to the consumption
choice problem of a hypothetical agent who faces a no-empty-promises
constraint, butwe must develop some notation firstl elefine the Radon—

22 gpecifically, Clark shows that two nonempty convex cahasdK (with vertices at the origin) in a sepa-
rable Banach space (like our consumption space) can be strictly separated if andlom{if— J) = ¢.
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Nikodym derivatived P' /d P, and lety be the linear functional that defines
the given superpositive linear pricing rule. The Riesz representation theorem
implies that there exists € L9(2, F, P), 1/ + 1/p = 1, such that

¥(cy) = E[vey] forall ¢y € LP(RQ, F, P). 3
Because) defines a superpositive linear pricing rukgep) > 0, P' almost
surely and forP almost allw € Q*, andv(w) > 0if &' (w) > 0.

We now demonstrate that there is a solution to Problem 4 for an agent
with initial endowmentw = 0 and state-dependent preferences

U (Co, C1) = —exp(—Co) — /Qexp(—(y(w) + C1(@)))P' (dw),

where

ymnz{bg%g if ' () > 0

0 if &' (w) = 0.

Consider the following new choice problem: chogsg ¢;) € C to maxi-
mizeU (Co, ;) subject to the budget constratt- 1 (¢1) = co+ E[vcy] <

0 and the nonnegativity conditiann > 0, that holdsP' almost surely and

for P almost allw € Q*. A solution to this new problem is optimal for
Problem 4 if there is a trading strategy that finances it. First-order sufficient
conditions for a solution to the new problem are

£ (o) exp(—(Y(®) + 1 (®))) + M (@) = yv(o)
exp(—Co) + Ao =y

y(Co+ E[vey)]) =0

A(w)C1(w) = 0, andiocp = 0 almost surely

for some Lagrange multipliers; € Li andig, y € N, [see, e.g., Duffie
(1988, p. 77)]. The Lagrange multipliexs and, are the shadow prices for

the nonnegative constraints agandc,, respectively, angt is the marginal
utility of wealth. A solution to the new problemég = 0,c; = 0,y = 1,and

Mw) = v(w) if &' (w) = 0 holds and\.(w) = 0 otherwise. The multiplier

2 belongs toL{ since it satisfies & A < v andv € LY, socy, A, andy
satisfy the first-order and the complementary slackness conditions. This is
a solution to Problem 4 singe= 0 is trivially feasible and finances.

(iii) The existence of an optimal demand rules out robust arbitrage op-
portunities, for the net trade could be added to any candidate optimum,
increasing expected utility without violating the no-empty-promises con-
straint. If (cp, €1) is a strong optimum, then the intersectionaf, ¢1) + A

with (B + M — A) must be empty since preferences are monotonically in-
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creasing. Becaus@y, ¢1) € B, we haveAN (M — A) = ¢, which is the
condition for absence of robust free lunches. This finishes our proo®

Remark Hindy (1995) writes his pricing rule as the sum of the direct con-
tribution to expected utility and the shadow price of his solvency constraint.
In our notation, the price in Equation (3) can be written as

¥ (C) = E [Lg-opci] + E [Lg—gver] = ¥ (c1) + ¥ (co).

whereys' andy* are continuous linear functionals. The latter is nontrivial
whenever the no-empty-promises constraintis binding and nonvacuous (i.e.,
P({&' = 0}NQ*}) > 0). Thusy* can be interpreted as the shadow price of
the no-empty-promises constraint, analogous to Hindy’s “solvency price.”
For the examples in Section 1, the state price density in the original problem
by Merton could be used to define a superpositive linear pricing rule for an
agent who has advance information. In these examples, the linear functional
Y¥* would be nontrivial.

We now prove Theorem 3.

Proof of Theorem 3We make use of our work in the proof of Theorem 4.
(i) The proof of parts (a), (b), and (c) of Definition 7 is exactly the same as the
corresponding parts of Definition 8 given in the proof of Theorem 4, where
A andM are replaced bya andM, respectively. To prove part (d), note that
for any E € F that satisfies the conditioR' (E) = 0, the corresponding
consumption plax0, 1o+ A1g) belongs toA for all real. Strict separation
implies that

Y(lg +Alg) = v (1o) + A (1g) > 0 forall reala,

which holds only if the conditiony (1g) = 0 is satisfied.
(i) This part is nearly the same, except for the absence of the no-empty-
promises constraint. However, the spigw) > 0} and{&' (w) > 0} differ
only by a nullset, so analogous first-order conditions hold at an optimum.
(iif) Apply the same argument td and M. u

. Enforcement of No Empty Promises

A potential conceptual problem with the general analysis is one of enforce-
ment: How do we ensure that an agent chooses a strategy with nonnegative
wealth in states that the agent believes will never happen? We now show
that if information arrival is continuous, then shutting down the agent’s in-
vestments for the duration once wealth hits zero is essentially equivalent to
ruling out empty promises. With continuous information arrival, the market
knows the agent’s wealth cannot go below zero without first hitting zero.
By contrast, the wealth could jump from positive to negative without warn-
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ing in a model with discrete trading or unpredictable jumps in the return
distribution.

For simplicity, we assume that the risky assets’ instantaneous returns are
represented by

wdt + ord Zs,

whereZ is a standard multidimensional Brownian motion. We follow the
usual practice of defining the filtratioR, which represents information
arrival, to be the filtration generated Byand augmented witP nullsets;
this filtration is continuous [Karatzas and Shreve (1988, Section 2.2.7)].

Trading strategies must satisfy the conditions assumed in Section 4, in-
cluding those needed to define stochastic integrals. In particular, trading
strategies must be predictable. Modifying a strategy to stop investment
when wealth first hits zero will not violate any of these conditions, since
the time when wealth first hits zero is a stopping time.

For implementation, we want to think of two different types of stopping
times. A private version of stopping time available to the agent is the usual
definition of stopping time. In this definition it is assumed that the stochastic
process is known (in this case from knowledge of the agent’s strategy). A
public type of stopping time is one that depends on the wealth history
and not on knowledge of the agent’s particular strategy. An example of a
public stopping time is stopping when the agent’s wealth hits zero, which is
something the market can implement without knowing the agent’s strategy.
An example of a private stopping time is the last time before wealth first goes
negative (which is a stopping time because of the continuous information
arrival). A private stopping time is available to the agent (to whom the
strategy is known) for construction of an arbitrage, but not to the market's
regulatory mechanism. Our proof of enforceability of no-empty-promises
uses stopping when wealth hits zero, which is our example of a public
stopping time.

We state a new consumption choice problem which includes a constraint
that shuts down the agent’s investment when wealth first hits zero.

Problem 5. Choose consumptiafty, ¢;) € C to maximize expected utility
U (¢, C1) subject to the following conditions:

(a) There is a trading strateg§ € © for which wealth satisfies Equa-
tion (2) and the conditions W< w — ¢p and g < Wy, P almost surely.

(b) c; and W are nonnegative in states important to the agéntc; >
0) = 1) and((Vt € [0, T]), W, > 0), P'almost surely.

(c) The agent’s trades are shut down at the first instant that wealth
becomes zero; that ig(Vt)(W; = 0 = (Vs > t)fs = Ws = 0)), P' almost
surely.

Problem 5 differs from Problem 4 only in constraint (c): the no-empty-
promises condition in Problem 4 is replaced by the shutdown constraint in
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Problem 5. In the shutdown constraint, we use the agent’s information set
since optimization is from the agent’s perspective. Nothing essential would
be changed if we required this to hold in states important to the market as
well.

We now state our main result on enforcement. It says that from the
perspective of optimal choice, the no-empty-promises constraint can be
replaced by a constraint that shuts down the agent’s investment when wealth
first hits zero.

Theorem 5. Assume that information arrival is continuous and that Prob-
lem 4 or Problem 5 has a solution. Further assume that there exists a
trading strategy giving a payoff bounded below away from zero and a pos-
itive wealth process (as there would if there exists a locally riskless asset
with a nonnegative interest rate process). Then the problems are equivalent
in the following sense:

(i) Supposéd, W, C) is feasible in one of Problem 4 and Problem 5. Then
define the new strateggd, W, C), by closing out the agent’s investments
when wealth hits zero. Let

__Jmin{t | W, <0} ifsuchat exists
=T otherwise.

Letting A indicate the minimum, we defirte = Ot Lit<y, Wi = Wi,
andC = C1, ). This new strategy is just as desirable to the agent as
(@, W, C) and is feasible for both problems.

(ii) There is a strategyd, W, C) that is a solution to both Problem 4 and
Problem 5.

We now prove Theorem 5.

Proof of Theorem 5 (i) Feasibility requires to be predictable and to satisfy
the integrability conditions needed to define stochastic integrals. It will be
predictable because it is adapted and because adapted strategies coincide
with predictable ones whenever information arrival is continuous. It will
be integrable because, by construction, integrals of the modified strategy
equal integrals of the original strategyup to the stopping time.?® Thus
the new strategies are integrable if the original strategies are.

The statement that the two strategies are equally desirable follows from
aclaim that\NT = Wi, P! almost surely, which we now show.®, W, C)
is feasible for Problem 5, the claim is immediate because stopping wealth

23 The fact thatr is a stopping time follows from the fact that optional and predictable times coincide
whenever informational arrival is continuous [see Karatzas and Shreve (1988, Problem 1.2.7)].
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is redundant on paths d¢t'-positive probability given the shutdown con-
straint. To prove the claim whei@, W, C) is feasible only in Problem 4,

we show that if it is false then there is a robust arbitrage available to the
agent, which will be a contradiction to the assumption that Problem 4 or
Problem 5 has a solution.

Suppose that the claim is false. TRé-nonnegative wealth constraint
implies that there is &' -positive probability seE that contains paths along
which wealth hits zero and then eventually becomes positive byTimete
that0= Wy < W on E. Define a new stopping time by inf{t|W; < 0} if
such & exists orT otherwise. The trading strate@yl ;<. ., Which starts
investment at and shuts it down when wealth first becomes negative, pays
a P'-positive amount orE and ensures that wealth satisfies no-empty-
promises (i.e., wealth is pathwise nonnegat/almost surely). Thus we
have constructed a robust arbitrage.

The existence of the robust arbitrage immediately rules out an optimum
for Problem 4. Adding the arbitrage to an arbitrary feasible strategy in
Problem 5 may be infeasible, however, because the shutdown constraint
may stop investment before the arbitrage is complete. Thus we will rule
out a solution to Problem 5 by showing that the agent can shift a small
amount of initial wealth from the strategy to make the arbitrage available,
and for a small enough transfer the arbitrage will make it worthwhile at large
enough scale. Together these will imply a contradiction to our assumption
that Problem 4 or Problem 5 has a solution.

Let B be the payoff of a trading strategy giving a payoff bounded below
away from zero and a positive wealth process, scaled towgstitially.
Furthermore, leiX > 0, X # 0 be the payoff to the arbitrage strategy as
constructed above. Using free disposal if necessary, we may assume without
loss of generality thaX is a bounded random variable. Monotonicity implies
that any terminal consumption pl@nin a candidate optimum will be strictly
less desirable tha@ + X; however, the latter may be infeasible, sinc€ if
involves wealth hitting zero, then the agent may be shut down before the
arbitrage generating has been played out. Letandn be positive numbers.
The consumption plail — ¢)C + ¢B + nX, formed by shifting some
initial wealth fromC to B, is feasible because it requires initial investment
wo and because the investmentBnprevents wealth from hitting zero. If
utility U is bounded, expected utility is continuousiandn by dominated
convergence, and for = 1 and small enough, (1 — ¢)C +¢B + X is
strictly preferred tcC. If U is unbounded, then we can choas® be large
ande (which may depend on and can be uniformly bounded below by
an arbitrary positive number) to obtain unbounded expected utility on the
P'-positive probability set of states witk > 0. In either case, Problem 5
cannot have a solution, and our claim is proven.

(ii) By (i), just uset to construct a new solution to the problem that is
given to have a solution. u
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. Conclusion

We have demonstrated a version of the fundamental theorem of asset pricing
when agents have dogmatic differences of opinion but are prevented from
making empty promises. The primary difference is that linear pricing will
be superpositive since a state assigned zero probability by the agent may
have a positive price if it is important to the market. Superpositive linear
pricing is reconciled with expected utility maximization by ruling out empty
promises in important states. The shadow price of the no-empty-promises
constraint takes up slack between positive state prices and zero marginal
utility. These results are proven for finite-state and continuous-time models.

With continuous information arrival, the no-empty-promises constraint
can be enforced by permanently shutting down the agent’s investments from
the time wealth first hits zero.
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