
COMPUTATIONAL FINANCE

Lecture 2: Pricing Interest Derivatives
A Simple Binomial Interest Option Pricing Applet

Philip H. Dybvig
Washington University
Saint Louis, Missouri

Copyright c© Philip H. Dybvig 1996,1999

Some Simple Interest Derivatives

• Riskless Bonds

• Bond Options

– Puts, Calls, Straddles, etc.

– American, European, Down-and-Out, etc.

• Bond Futures and Futures Options

• Caps, Floors, Collars

• Riskless Inverse Floaters

Some Complex Interest Derivatives

• Mortgages and CMOs

• Structured Loans

• Risky Corporate Bonds

• Callable and/or Convertible Bonds

• Foreign Exchange Futures Options

• Hybrid Securities, e.g. a binary option paying off if at maturity 3-mo LIBOR
> 12% and the dollar is stronger against the yen than it was at the start of
the contract

Why Not Simply Use Black-Scholes?

• The interest rate is not constant.

• The volatility is not constant.

• “Today’s price” is not an asset price.

• We may want to value claims that are not simple combinations of puts and
calls.

A very clever (or lucky) application of Black-Scholes may give a reasonable
approximation, but it is simpler and more reliable to price a claim directly with
a model designed to price interest derivatives.

Binomial Pricing of Interest Derivatives

r �

��*

H

HHj

r + δ

r − δ
We choose δ = σ ∗

√
∆t.

The interest rate is not an asset! Therefore, we can’t use the formula from the
previous lecture to compute the risk-neutral probabilities or state prices. There
are several approaches:

• Make an assumption about the price process for some asset (e.g. a perpe-
tuity).

• Make an assumption about the nature of supply and demand in the economy
and compute equilibrium prices.

• Make an assumption about the interest rate process in the risk-neutral prob-
abilities, e.g.

– Random walk

– Modest mean reversion (my preference)

A Random Walk or Modest Mean Reversion

We choose the risk-neutral probabilities to induce a modest amount of mean
reversion, say 12-15% per year. If we want

E[∆r] = k(r∗ − r)∆t,

then

πuδ + (1− πu)(−δ) = k(r∗ − r)∆t

or

πu =
1

2
+
k(r∗ − r)∆t

2δ
.

A random walk (good for short maturities and non-critical applications) corre-
sponds to k = 0.

Another issue: use uneven spacing to make interest rate volatility a function of
the interest rate. Fudge factors can fit today’s yield curve. Stochastic volatility
and additional factors are harder.

Two Observations

About Timing The short riskless rate is known at the beginning of the period,
so the riskless rate we learn now affects the riskless return (and therefore the
discounting) over the time period starting now. Therefore, the pricing of a
riskless bond involves computations using interest rates up until one period
before maturity.

About Intermediate Cash Flows When a claim includes intermediate
cash flows (as for a coupon bond or a cap), the claim is simply added in at the
appropriate time. For example, if V indicates the ex-cashflow value and C the
cashflow, we have, at some node at time t,

V (t, r) =
π∗u(V (t, r + δ) + C(t, r + δ)) + π∗d(V (t, r − δ) + C(t, r − δ))

(1 + r)

In-class Exercise: Bond Prices

Consider a two-period binomial model. The short riskless interest rate starts
at 20% and moves up or down by 10% each period (i.e., up to 30% or down to
10% at the first change). The risk neutral probability of each of the two states
is 1/2. What is the price (after the coupon is paid) at each node of a discount
bond with face value of $100 maturing two periods from the start? (Hint: solve
back one period at a time. Be sure to use the appropriate discount factor at
each node!) What is the price at each node of a bond with a face value of $100
and a coupon of 10% per period?

In-Class Exercise: Bond Option Evaluation

For the coupon bond in the previous In-Class Exercise, compute the initial
value of a European call option on the coupon bond. The call option matures
in the middle period and has an exercise price of $90. (Exercise of the option
does not give you a claim to the coupon in the middle period.)

The HTML File Caplet.html

<HTML>

<HEAD>

<TITLE>Binomial Cap Pricing Program</TITLE>

</HEAD>

<BODY>

<APPLET CODE=Caplet.class WIDTH=400 HEIGHT=100>

</APPLET>

</BODY>

</HTML>

The Program File Caplet.java

//

// Fixed income binomial cap pricing applet

//

import java.applet.*;

import java.awt.*;

public class Caplet extends Applet {

F_I_bin c2;

double caprate,rzero;

Label capval;

TextField interest_rate, capped_level;

public Caplet() {

setLayout(new GridLayout(3,2));

add(new Label("Interest rate (%) ="));

add(interest_rate = new TextField("5",10));

add(new Label("Capped level (%) ="));

add(capped_level = new TextField("5.5",10));

add(new Label("Cap value (per $100 face) ="));

add(capval = new Label("**********"));

c2 = new F_I_bin((double) 2.0, (int) 24, (double) 0.01, (double) 0.05,

(double) 0.125, (int) 5001);

recalc();}

public boolean action(Event ev, Object arg) {

if(ev.target instanceof TextField) {

recalc();

return true;}

return false;}

double text2double(TextField tf) {

return Double.valueOf(tf.getText()).doubleValue();}

void recalc() {

capval.setText(String.valueOf((float) (100 *

c2.cap(text2double(capped_level)/100.0,

text2double(interest_rate)/100.0))));}}

//

// Fixed-income binomial option pricing engine

//

class F_I_bin {

int nper;

double tinc,up,down,sigma,rbar,kappa,prfact;

double [] r,val;

public F_I_bin(double ttm,int nper,double sigma,double rbar,double kappa,

int maxternodes) {

this.nper=nper;

tinc = ttm/(double) nper;

this.sigma = sigma;

up = sigma*Math.sqrt(tinc);

this.rbar = rbar;

this.kappa = kappa;

prfact = kappa*Math.sqrt(tinc)/(2.0*sigma);

val = new double[maxternodes];

r = new double[maxternodes];}

double bprice(double r0) {

int i,j;

double prup;

//initialize terminal payoffs

//i is the number of up moves

for(i=0;i<=nper;i++) {

// r[i] = r0 + up * (double)(2*i-nper); not needed for this claim

val[i] = 1.0;}

//compute prices back through the tree

//j is the number of periods from the end

//i is the number of up moves from the start

for(j=1;j<=nper;j++) {for(i=0;i<=nper-j;i++) {

r[i] = r0 + up * (double) (2*i-nper + j);

prup = 0.5 + prfact*(rbar-r[i]);

prup = Math.min((double) 1.0,Math.max((double) 0.0,prup));

val[i] = (prup*val[i+1]+(1.0-prup)*val[i])*Math.exp(-r[i]*tinc);}}

return(val[0]);}

double cap(double level,double r0) {

int i,j;

double prup;

//initialize terminal payoffs

//i is the number of up moves

for(i=0;i<=nper;i++) {

// r[i] = r0 + up * (double)(2*i-nper); not needed for this claim

val[i] = 0.0;}

//compute prices back through the tree

//j is the number of periods from the end

//i is the number of up moves from the start

for(j=1;j<=nper;j++) {for(i=0;i<=nper-j;i++) {

r[i] = r0 + up * (double) (2*i-nper + j);

prup = 0.5 + prfact*(rbar-r[i]);

prup = Math.min((double) 1.0,Math.max((double) 0.0,prup));

val[i] = (prup*val[i+1]+(1.0-prup)*val[i])*Math.exp(-r[i]*tinc)

+ Math.max((double) 0.0,(r[i]-level)*tinc);}}

return(val[0]);}}

