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1. True-False (25 points)

A. Linear programs typically have interior solutions.

False. Unless the objective is zero, all solutions are at the boundary.

B. A local optimum of a convex optimization problem is a global optimum.

True.

C. The Fundamental Theorem of Asset Pricing is about the absence of arbi-
trage.

True.

D. The product of the eigenvalues equals the trace of a matrix.

False. The trace is the sum of the eigenvalues. The determinant is the
product of the eigenvalues.

F. Slack variables are used to convert inequality constraints into equality
constraints.

True.

2. Linear Programming (25 points)

Consider the following linear program:

Choose nonnegative x1, x2, and x3 to
maximize 2x1 + x2 + 3x3, subject to
x1 + 2x2 + 3x3 ≤ 6 and
x1 + x2 ≤ 3



A. What is the dual linear program?

Choose nonnegative y1 and y2 to
minimize 6y1 + 3y2, subject to
y1 + y2 ≥ 2,
2y1 + y2 ≥ 1, and
3y1 ≥ 3.

B. Is the primal feasible? Is the dual feasible?

Yes to both. (0, 0, 0) is feasible in the primal and (1, 1) in the dual.

C. Infer from the answers in part B: Is the primal bounded? Is the dual
bounded?

Yes to both, because primal feasible iff dual bounded and dual feasible iff
primal bounded.

D. Solve the dual problem.

The second constraint is redundant. We know from parts B and C there is a
solution and from first principles that the solution has to be at an extreme
point of the feasible set. Graphing the constraints shows that extreme points
in the feasible set are (1, 1) and (2, 0); (1, 1) is the solution because it has
the smaller value 9 < 12.

E. Use the solution to the dual problem to solve the primal problem.

Since the middle constraint in the dual is not binding at the solution, its
shadow price is zero so that x2 = 0 in the solution to the primal. Also, y1
and y3 are not zero so the shadow prices of the first and third constraints
in the primal are positive and these constraints must be binding. Solving
x1 + 3x3 = 6 and x1 + 0 = 3, we have x1 = 3 and x3 = 1. Therefore the
solution is (x1, x2, x3) = (3, 0, 1). This has value 9, the same as the value
of the dual. Since we have found feasible solutions to the primal and the
dual with the same value, they must be solutions to the problems, giving an
independent check on the analysis.
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3. REGIME-SWITCHING (25 points) Consider a two-state Markov Chain
in continuous time. Regime switches take place at the following rates:

state 1 → state 2 probability 0.1/year
state 2 → state 1 probability 0.05/year

Initially (at time t = 0), we are in state 2.

a. What is the matrix A in the ODE

π′(t) = Aπ(t)

describing the dynamics of the vector π(t) of future regime probabilities?

The off-diagonal entry Aij is the probability of moving to state i given that
we are now in state j, and the on-diagonal entry Aii makes column i sum to
0. Therefore,

A =

(

−.1 .05
.1 −.05

)

.

b. Solve for the eigenvalues of A.

0 = det(A− λI) = det

(

−.1− λ .05
.1 −.05− λ

)

.

= (−.1− λ)(−.05− λ)− .1× .05

= λ2 + .15λ+ .005− .005 = λ(λ+ .15)

Therefore, λ1 = 0 and λ2 = −.15 are the eigenvalues.

c. Solve for the associated eigenvectors.

(A− λ1I)q = Aq = A =

(

−.1 .05
.1 −.05

)

q = 0.

We can take q2 = 1 and then q1 = 1/2 so we can take q1 = (1/2, 1)T (or any
nonzero scalar multiple of this vector).
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(A− λ2I)q = A =

(

.05 .05
.1 .1

)

q = 0.

We can take q2 = 1 and then q1 = −1 so we can take q2 = (−1, 1)T (or any
nonzero scalar multiple of this vector).

d. Write down the general solution of the ODE.

Since the ODE is homogeneous, the homogeneous solution is the general
solution:

π(t) = K1e
λ1tq1 +K2e

λ2tq2

= K1

(

1/2
1

)

+K2e
−.15t

(

−1
1

)

e. Write down the particular solution corresponding to the initial condition
that we start in state 2.

This condition is y(0) = (0, 1)T which implies that

K1

(

1/2
1

)

+K2

(

−1
1

)

=

(

0
1

)

.

The solution to this is K1 = 2/3 and K2 = 1/3. Therefore, the specific
solution is

π(t) =

(

1−e−.15t

3
2+e−.15t

3

)

f. A project costing $90, 000 has a cash flow of $6, 000/year in state 2 and
$1, 000/year in state 1. If the interest rate is 5%/year, does this project have
a positive NPV?

In thousands of dollars, we have cash flow of c = (1, 6)T/year in the two
states and we can write the present value as

PV =
∫

∞

t=0

e−.05tcTπ(t)dt
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=
∫

∞

t=0

e−.05t

(

1
1− e−.15t

3
+ 6

2 + e−.15t

3

)

=
13

3

∫

∞

t=0

e−.05tdt+
5

3

∫

∞

t=0

e−.20tdt

=
13

3× 1/20
+

5

3× 1/5

=
260 + 25

3
= 95

Therefore, the NPV is 95− 90 = 5 or $5, 000.

4. Kuhn-Tucker Conditions (25 points)

Consider the following optimization problem:

Choose cu and cd to
maximize 1

2
log(cu) +

1

2
log(cd), subject to

4

5
(1
4
cu +

3

4
cd) ≤ 6.

This is a single-period choice of investment for consumption in a binomial
model with log utility, initial wealth of 6, actual probabilities 1/2 and 1/2,
risk-neutral probabilities 1/4 and 3/4, and riskfree rate of 25% (and therefore
discount factor 4/5).

A. What are the objective function, choice variables, and constraint?

objective function: 1

2
log(cu) +

1

2
log(cd)

choice variables: cu and cd
constraint: 4

5
(1
4
cu +

3

4
cd) ≤ 6

B. What are the Kuhn-Tucker conditions?

( 1

2cu
, 1

2cd
) = λ(1

5
, 3
5
), λ ≥ 0, and

λ(4
5
(1
4
cu +

3

4
cd)− 6) = 0

C. If we add constraints cu ≥ 6 and cd ≥ 6, what are the Kuhn-Tucker
conditions now?
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( 1

2cu
, 1

2cd
) = λ(1

5
, 3
5
) + λu(−1, 0) + λd(0,−1),

λ, λu, and λd ≥ 0, λ(4
5
(1
4
cu +

3

4
cd)− 6) = 0,

λu(6− cu) = 0, and
λd(6− cd) = 0.

5. Bonus question (30 bonus points)

A. Solve the optimization problem in problem 4 without the extra constraints
in part 4C.

There is more than one way of solving this problem and the next one.

1

2cu
= λ1

5
⇒ cu = 5

2λ
1

2cd
= λ3

5
⇒ cd =

5

6λ

substituting into the budget constraint, which must be binding or else we
could increase the objective function by increasing consumption:: 1

5

5

2λ
+ 3

5

5

6λ
=

6 ⇒ λ = 1

6
. therefore: cu = 15 and cd = 5 which can easily be verified to

satisfy the K-T conditions for λ = 1/6. Since this is a convex optimization
with a strictly concave objective function and the KT conditions are not
degenerate (the gradients of binding g’s are linearly independent), this is the
solution.

B. Solve the optimization problem in problem 4 with the extra constraints
in part 4C.

We know the budget constraint is binding since otherwise increasing con-
sumption will increase value. Since the constraint cd ≥ 6 is violated in the
solution in part A and cu ≥ 6 is satisfied and not binding, it is reasonable
to conjecture that cd ≥ 6 is the only new constraint binding in the solution
here.1 Then the budget constraint implies cu = 12. To prove this is a solu-
tion, we solve for the multipliers. Since the constraint cu ≥ 6 is not binding,
the c. slackness condition λu(6− cu) = 0 implies λu = 0 and therefore

1Of course, this can be derived by going through cases of what constraints are binding.

If we assume both new constraints are binding, cu = cd = 6, which does not satisfy the

budget constraint. If we assume neither new constraint is binding, we obtain the solution

in part A, which is not feasible. If we assume the new constraint cu ≥ 6 is binding but

the other new constraint is not, we find that λu < 0, which is not consistent with the

first-order conditions.
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1

2cu
= λ1

5
⇒ λ = 5

24
.

Then we can also solve for λd:
1

2cd
= λ3

5
− λd ⇒ λd = λ3

5
−

1

2cd
= 5

24

3

5
−

1

12
= 1

24
.

It is easy to verify that the KT conditions are satisfied by choosing cu = 12,
cd = 6, λ = 5/24, λu = 0, and λd = 1/24. Since this is a nondegenerate solu-
tion of the KT conditions for a convex optimization with a strictly concave
maximand, (cu, cd) = (12, 6) is the unique solution.
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