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1. True-False (25 points)

A. Constrained problems never have interior solutions.

FALSE

B. In an unconstrained problem with a concave objective function, a local
maximum is a global maximum.

TRUE

C. Multiplying a random variable by a constant greater than 1 increases its
kurtosis.

FALSE

D. The eigenvalues of a positive definite matrix are all positive.

TRUE

E. A linear program with a bounded dual always has an optimal solution.

FALSE

2. Linear Programming (25 points) Consider the following linear program:

Choose nonnegative x1, x2, and x3 to
maximize x1 + 6x2 + 3x3, subject to
x1 + 3x2 + 3x3 ≤ 6 and
x1 + x2 ≤ 3

A. What is the dual linear program?



Choose nonnegative y1 and y2 to
minimize 6y1 + 3y2, subject to
y1 + y2 ≥ 1
3y1 + y2 ≥ 6
3y1 ≥ 3

B. Solve the dual problem.

Plotting the constraints shows that the feasible set has corners (2, 0)T and
(1, 3)T . Therefore the problem is feasible and it is also bounded because the
objective function is nonnegative for all feasible y (which are nonnegative),
and therefore either (2, 0)T or (1, 3)T (or both) must be a solution. The
objective function at (2, 0)T is 6× 2 + 3× 0 = 12 and the objective function
at (1, 3)T is 6× 1 + 3× 3 = 15. Therefore, (2, 0)T is the solution.

C. Use the solution to the dual problem to solve the primal problem.

In the dual problem, at the solution (2, 0)T , only the second constraint holds
with equality and therefore the multipliers for the first and third constraints,
which are also the optimal the choice variables x1 and x3 for the primal
problem, must be zero. Therefore, we have x1 = x3 = 0. Also, y1 = 2 > 0
is the optimal choice for the first variable in the dual problem and this is
therefore the multiplier for the first constraint in the primal, which must
be binding by complementarity slackness. Given the first constraint in the
primal is binding and x1 = x3 = 0, we have that x = (0, 2, 0)T is the solution
to the primal problem.

D. Show that the strong duality theorem holds in this example.

The value of the solution x = (0, 2, 0)T of the primal problem is 0 + 6× 2 +
3 × 0 = 12, which we have already seen in part B to be the value of the
solution (2, 0)T of the dual problem. Therefore, the strong duality theorem,
which says the primal and dual problems have the same value, is satisfied.

3. REGIME-SWITCHING (25 points) Consider a two-state Markov Chain
in continuous time. Regime switches take place at the following rates:

state 1 → state 2 probability 0.10/year
state 2 → state 1 probability 0.15/year
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Initially (at time t = 0), we are in state 2.

A. What is the matrix A in the ODE

π′(t) = Aπ(t)

describing the dynamics of the vector π(t) of future regime probabilities?

[

−.1 .15
.1 −.15

]

B. Solve for the eigenvalues of A.

Since the eigenvalues are the solutions of det(A− λI) = 0, we have that

0 = det

[

−.1− λ .15
.1 −.15− λ

]

= λ2 + .25λ = λ(λ− (−.25))

and therefore the eigenvalues are λ0 = 0 and λ1 = −.25.

C. Solve for the associated eigenvectors.

We will look for a nonzero solution to (A− λI)x = 0. Since eigenvectors are
determined only up to nonzero scale, we arbitrarily set x2 = 1 (although we
will change this choice if needed). So, for λ0 = 0, we have

[

−.1 .15
.1 −.15

] [

x1

1

]

= 0

so x1 = 1.5 and we can take the first eigenvector to be x0 = (1.5, 1)T .

For λ1 = −.25, we have
[

.15 .15
.1 .1

] [

x1

1

]

= 0

so x1 = −1 and we can take the second eigenvector to be x1 = (−1, 1)T .

D. Write down the general solution of the ODE.
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π(t) = a0e
λ0tx0 + a1e

λ1tx1

= a0

[

1.5
1

]

+ a1e
−.25t

[

−1
1

]

E. Write down the particular solution corresponding to the initial condition
that we start in state 2.

Substituting π(0) = (0, 1)T , we have a0 = .4 and a1 = .6, so that

π(t) =

[

.6

.4

]

+ e−.25t

[

−.6
.6

]

.

F. A project costing $100, 000 has a cash flow of $10, 000/year in state 1 and
$1, 000/year in state 2. The cash flows continue forever. If the continuously-
compounded interest rate is 5%/year, does this project have a positive ex-
pected NPV?

Define c = (10, 1)T to be the vector of costs across states, in thousands. Then
we have

E[PV ] =
∫

∞

t=0

(

cT
([

.6

.4

]

+

[

−.6
.6

]

e−.25t

))

e−.05tdt

=
6.4

.05
−

5.4

.30
= 128− 18 = 110.

Therefore, the NPV is 110 − 100 = 10 and the project does have a positive
expected NPV.

4. Kuhn-Tucker Conditions (25 points)

Consider the following optimization problem:
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Choose cu and cd to
maximize 2

3
log(cu) +

1

3
log(cd), subject to

4

5
(1
2
cu +

1

2
cd) = 6,

cd ≥ 6,
and
cu ≥ 6.

This is a single-period choice of investment for consumption in a binomial
model with log utility, initial wealth of 6, actual probabilities 2/3 and 1/3,
risk-neutral probabilities 1/2 and 1/2, and riskfree rate of 25% (and therefore
discount factor 4/5).

A. What are the objective function, choice variables, and constraints?

objective function: 2

3
log(cu) +

1

3
log(cd)

choice variables: cu and cd
constraints: 4

5
(1
2
cu +

1

2
cd) = 6, cd ≥ 6, and cu ≥ 6.

B. What are the Kuhn-Tucker conditions?

(

2

3cu
1

3cd

)

= λ

(

2

5
2

5

)

+ λu

(

−1
0

)

+ λd

(

0
−1

)

(∗)

λu(6− cu) = 0 and λd(6− cd) = 0
λu ≥ 0 and λd ≥ 0

optionally include the constraints:

4

5
(1
2
cu +

1

2
cd) = 6

cd ≥ 6
cu ≥ 6

C. Solve the optimization problem.

Since the left-hand side of the gradient equation (*) is positive and λu and
λd are nonnegative, λ > 0. If we have λu = λd = 0, then solving the budget
constraint and the gradient equation (*) we obtain cu = 10 and cd = 5,
which violates the constraint cd ≥ 6. Therefore, it is natural to conjecture
that constraint is binding so that cd = 6 and from the budget constraint
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cu = 9. This satisfies all the constraints and the Kuhn-Tucker conditions if
we set λ = 1/6, λu = 0, and λd = 1/15 − 1/18 > 0. (It is easy to compute
λd = 1/90, but we don’t actually need to calculated it since 1/15 − 1/18 is
obviously positive.
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