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1. True-False (25 points)

A. Every unconstrained problem has at least one interior solution.

False. (An unconstrained problem may not have any solution at all. For
example consider the problem

Choose x to
maximize x2

which increases without bound as |x| increases.)

B. In a constrained problem with a concave objective function, a local max-
imum is always a global maximum.

False. (This would be true if the constraint set were known to be convex,
but not in general. Consider the problem

Choose x1 and x2 to
minimize (x1 − 1)2 + (x2 − 2)2

subject to max(x1, x2) ≥ 0

In this problem, (x1, x2) = (1, 0) and (x2, x2) = (0, 2) are both local optima,
but only (1, 0) is a global optimum.)

C. Skewness of a random variable is always positive.

False. (A random variable that equals 1 with probability 2/3 and −2 with
probability 1/3 is negatively skewed.)

D. The sum of the eigenvalues of a negative semidefinite matrix is always
negative.



False. (It could be zero, as it is for every square matrix whose entries are all
zero.)

E. A linear program with a bounded primal always has an optimal solution.

False. (Consider the program

Choose x to
maximize x
subject to x ≥ 3 and x ≤ 2

This program is bounded but has no feasible solution and therefore no opti-
mal solution.)

2. Linear Programming (25 points) Consider the following linear program:

Choose nonnegative x1, x2, x3, and x4 to
maximize x1 + 6x2 + 4x3 + 4x4, subject to
x1 + 3x2 + 3x3 + 5x4 ≤ 6 and
x1 + x2 ≤ 3

A. What is the dual linear program?

Choose nonnegative y1 and y2 to
minimize 6y1 + 3y2, subject to
y1 + y2 ≥ 1
3y1 + y2 ≥ 6
3y1 ≥ 4 and
5y1 ≥ 4

B. Solve the dual problem.

Graphing the problem shows that the only extreme points in the feasible
set are (y1, y2) = (2, 0) (which has equality in the second constraint and
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y2 ≥ 0) and (y1, y2) = (4/3, 2) (which has equality in the second and third
constraints). These two points have values 12 and 14, respectively, so the first
point (2, 0) is preferred (because we are minimizing). Also, this is a global
minimum because the objective function is increasing in both y1 and y2 so
going away in feasible extreme directions increases the objective function.

C. Use the solution to the dual problem to solve the primal problem.

Since only the second constraint is binding and because the dual variables of
the primal are the choice variables of the dual and vice versa, complementary
slackness imples that x1 = x3 = x4 = 0 and x2 ≥ 0 and the first constraint
of the primal problem holds with equality. Therefore, 3x2 = 6 or x2 = 2 and
therefore (x1, x2, x3, x4) = (0, 2, 0, 0) is the optimal solution of the primal
problem.

D. Show that the strong duality theorem holds in this example.

The optimal solution of the primal has value (1, 6, 4, 4) · (0, 2, 0, 0) = 12, and
the optimal solution of the dual has value (6, 3) · (2, 0) = 12. Since the two
are the same, strong duality holds.

3. Kuhn-Tucker Conditions (25 points)

Consider the following optimization problem:

Choose cu and cd to
maximize 2

3
log(cu − 3) + 1

3
log(cd − 3), subject to

4
5
(1
2
cu +

1
2
cd) = 6,

cd ≥ 6,
and
cu ≥ 6.

This is a single-period choice of investment for consumption in a binomial
model with translated log utility, initial wealth of 6, actual probabilities 2/3
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and 1/3, risk-neutral probabilities 1/2 and 1/2, and riskfree rate of 25% (and
therefore discount factor 4/5).

A. What are the objective function, choice variables, and constraints?

objective function: 2
3
log(cu − 3) + 1

3
log(cd − 3)

choice variables: cu and cd

constraints: 4
5
(1
2
cu +

1
2
cd) = 6, cd ≥ 6, and cu ≥ 6

B. What are the Kuhn-Tucker conditions?

Now, f(cu, cd) = 2
3
log(cu − 3) + 1

3
log(cd − 3), so ∇f(cu, cd) = (2/(3(cu −

3)), 1/(3(cd − 3)))T . The first constraint is an equality constraint with func-
tion g(cu, cd) = (2/5)(cu+cd)−6 and there are two inequality constraints with
g1(cu, cd) = 6−cu and g2(cu, cd) = 6−cd (since inequality constraints for max-
imizations are written with ≤ to make the direction into the feasible set cor-
rect when the Lagrangian multipliers are positive). The corresponding gra-
dients for the constraints are ∇g(cu, cd) = (2/5, 2/5), ∇g1(cu, cd) = (−1, 0),
and ∇g2(cu, cd) = (0,−1). Therefore, the K-T conditions are

( 2
3(cu−3)

1
3(cd−3)

)

= λ

(

2
5
2
5

)

+ λu

(

−1
0

)

+ λd

(

0
−1

)

(*)

λu, λd ≥ 0

λu(6− cu) = 0

λd(6− cd) = 0

Optionally, include the constraints:

4
5
(1
2
cu +

1
2
cd) = 6

cd ≥ 6

cu ≥ 6
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C. Solve the optimization problem.

Note that λ > 0 since ∇f has all positive elements and the nonnegative
multipliers λu and and λd multiply nonpositive vectors in the main first-
order condition (∗). Therefore, we can take λ > 0 and consider the 4 cases
determined by λu = 0 or not and λd = 0 or not. When solving the problem,
we can stop when we find a solution to the first-order condition. Because
the objective function is smooth (it is C∞ on its domain) and concave1 and
the constraints are affine and nondegenerate,2 the first-order conditions are
necessary and sufficient.

λu = λd = 0:

In this case, the f.o.c. (*) is

( 2
3(cu−3)

1
3(cd−3)

)

= λ

(

2
5
2
5

)

.

Substituting in the budget constraint 4
5
(1
2
cu+

1
2
cd) = 6, we solve for (cu, cd) =

(9, 6) which is a solution since it satisfies the K-T conditions with (λ = 5/9
and λu = λd = 0) and all the constraints of the problem. If we checked this
case first, we would be done.

λu > 0 and λd = 0:

In this case, complementary slackness implies cu = 6 so the budget constraint
4
5
(1
2
cu +

1
2
cd) = 6 implies cd = 9. The f.o.c. (*) in this case is

( 2
3(cu−3)

1
3(cd−3)

)

= λ

(

2
5
2
5

)

+ λu

(

−1
0

)

so we have λ = 5/36 and λu = −1/6. This cannot be a solution because the

1The second derivative of the objective function is zero off the diagonal and negative on

the diagonal. Therefore, it is negative definite since the two eigenvalues are the diagonal

entries.
2Since the three constraints are never all satisfied with equality at the same time, we

only need to observe that each pair of constraint gradients is linearly independent.
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sign on λu is wrong.

λu = 0 and λd > 0:

In this case, complementary slackness implies cd = 6 so the budget constraint
implies cu = 9. The f.o.c. (*) in this case is

( 2
3(cu−3)

1
3(cd−3)

)

= λ

(

2
5
2
5

)

+ λd

(

0
−1

)

so we have λ = 5/9 and λd = 0. Although this does not satisfy our as-
sumption that λd > 0, this solution does satisfy the constraints and the K-T
conditions (it is the same solution we found above assuming λu = λd = 0),
so if we found this first, we would be done.

λu, λd > 0:

In this case, all three constraints would have to be binding. However, if
cu = cd = 6 the budget constraint 4

5
(1
2
cu +

1
2
cd) = 6 is not satisfied, so this

case cannot happen.

The solution was the one in the first case (also found in the third case) with
cu = 9, cd = 6, λ = 5/9, λu = 0, and λd = 0.

4. REGIME-SWITCHING (25 points) Consider a two-state Markov Chain
in continuous time. Regime switches take place at the following rates:

state 1 → state 2 probability 0.1/year
state 2 → state 1 probability 0.1/year

Initially (at time t = 0), we are in state 1.

A. What is the matrix A in the ODE

π′(t) = Aπ(t)

describing the dynamics of the vector π(t) of future regime probabilities?
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A =

(

−0.1 0.1
0.1 −0.1

)

B. Solve for the eigenvalues of A.

det(A− λI) = det

(

−0.1− λ 0.1
0.1 −0.1− λ

)

= 0

λ2 + .2λ+ .01− .01 = 0

λ = 0,−.2

C. Solve for the associated eigenvectors.

λ = 0:

(A− λI)x =

(

−0.1 0.1
0.1 −0.1

)(

x1

x2

)

= 0

Try the normalization x2 = 1. Then we have x1 = 1 and the eigenvalue is
(1, 1)T .

λ = −.2:

(A− λI)x =

(

0.1 0.1
0.1 0.1

)(

x1

x2

)

= 0

Try the normalization x2 = 1. Then we have x1 = −1 and the eigenvalue is
(−1, 1)T .

D. Write down the general solution of the ODE.

π(t) = c1

(

1
1

)

+ c2e
−.2t

(

−1
1

)

.

E. Write down the particular solution corresponding to the initial condition
that we start in state 1.
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Substituting π(0) = (1, 0)T , we find c1 = 1/2 and c2 = −1/2 so we have

π(t) = 1
2

(

1
1

)

− 1
2
e−.2t

(

−1
1

)

= 1
2

(

1 + e−.2t

1− e−.2t

)

.

F. A project costing $45, 000 has a cash flow of $10, 000/year in state 1 but
loses money with cash flow −$8, 000/year in state 2. The cash flows continue
forever. If the continuously-compounded interest rate is 10%/year, does this
project have a positive expected NPV?

In thousands, we have

NPV =
∫

∞

t=0
e−.1t(10,−8)π(t)dt

=
∫

∞

t=0
e−.1t(10

1 + e−.1t

2
− 8

1− e−.1t

2
)dt

=
∫

∞

t=0
(e−.1t + 9e−.2t)dt

=
1

.1
+

9

.3
= 40.

Therefore, the NPV is 40, 000− 45, 000 = −5, 000 < 0. It is not positive.

5. Bonus problem (30 bonus points)

Consider the Markov switching model in Problem 4 and in particular the
project described in part 4E. Suppose that instead of continuing forever, the
project can be costlessly (and irreversibly) abandoned anytime you want,
without any cash flows at that time or subsequently. To get any credit for
this problem, you must show your work, and there is no use just guessing.

A. What is the optimal strategy? You can restrict your analysis to the only
sensible strategies (a) do nothing, (b) buy the project and never abandon it,
and (c) buy the project and continue to operate it until state 2 occurs, at
which time you abandon the project.

8



Obviously, the NPV of (a) is zero and the NPV of (b) was computed in
problem 4 as −$5, 000. There are several ways of thinking about the NPV
for (c); the key is that we have to think about the dynamics of the state
transitions differently so we distinguish states in which we have previously
visited state 2 (and abandoned the project) from states in which we have
not. We could define the states by (i) in state 1 and never before in state 2,
(ii) in state 2, and (iii) in state 1 but visited state 2 before. However, once
we visit state 2, the project is over and we don’t care whether we are in state
1 or state 2, so we can simply define the states as (I) haven’t visited state 2
yet and (II) have visited state 2. Using these state definitions, we have that
π′(t) = Aπ(t) where

A =

(

−0.1 0
0.1 0

)

.

Using calculations as in problem 4, it is easy to compute that A has eigenval-
ues 0 and −.1 with corresponding eigenvectors x1 = (0, 1)T and x2(1,−1)T .
So, the general solution of π′(t) = Aπ(t) is given by π(t) = c1(0, 1)

T +
e−.1t(1,−1)T . The particular solution satisfying π(0) = (1, 0)T is

π(t) = 1
2

(

e−.1t

1− e−.1t

)

.

The present value in thousands of starting the project at the outset and
abandoning it once state 2 occurs is:

PV =
∫

∞

t=0
e−.1t10e−.1tdt

=
10

.2
= 50

So, the NPV of (c) is $50, 000−$45, 000 = $5, 000. Since this NPV is highest,
it is the optimal strategy.
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B. What is the NPV of the optimal strategy?

The NPV of (c), which is $5, 000.
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