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Background

Many problems look simple in a univariate setting but complicated in a multi-
variate setting. For example, consider a simple model of population

xt = Axt−1.

If xt is a scalar (a number, say representing the population of Missouri) and so
is A, this has a simple solution and xt = Atx0 and we know immediately what
xt is for all t. However, if xt is a vector (say two numbers, representing the
populations of Missouri and Illinois) and A is a matrix, then we can still write
xt = Atx0, but this has matrix multiplication and it is hard to see what is going
on:
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For example, it is hard to see from this what is the long-term ratio of Missouri
population to Illinois population.
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A Special Case that Reduces to the Univariate Case

Suppose there is no population movement between Missouri and Illinois. Then
the matrix A is diagonal

A =









a11 0
0 a22









and therefore

Atx0 =
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In this case, we can see exactly what is happening. The state with the higher
population growth rate (a11 − 1 or a22 − 1) will have an increasing fraction of
the population over time.

This case of a diagonal matrix is useful but too special for most applications.
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Definition: Eigenvalues and Eigenvectors

Let A be a square matrix, and consider a scalar λ and a nonzero N -vector x.
We say that λ is an eigenvalue of A, with associated eigenvector x, if

Ax = λx.

Already we can see that this might be useful because Atx = λtx, so that at least
for this initial condition the dynamics are like in the univariate case.

More importantly, if λ1, ... λN are eigenvalues of A with corresponding eigen-
vectors x1, ... xn, then

xt =
N
∑

n=1

cnλ
t
nxn

is the solution to xt = Axt−1 with initial condition x0 = ∑N
n=1

cnxn.
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Computing Eigenvalues and Eigenvectors

First, solve the equation det(A − λI) = 0. (If det(A − λI) 6= 0, then there
is no nonzero solution to the equation (A − λI)x = 0, which is equivalent to
the eigenvalue equation Ax = λx.) Because of the form of the determinant,
this is a polynomial equation of order N , so the roots might have to be found
numerically.

Second, for each eigenvalue λ, find a nonzero solution the eigenvalue equation
Ax = λx by solving (A − λI)x = 0. Usually, the number of independent
solutions for a given λ equals the algebraic multiplicity of λ as a root of the
determinant equation above.
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Computing Eigenvalues: Example

Consider

A =









2 1
2 3








.

Now,

det(A − λI) = det









2 − λ 1
2 3 − λ









= (2 − λ)(3 − λ) − 1 × 2

= λ2 − 5λ + 4

= (λ − 4)(λ − 1)

The eigenvalues are λ1 = 4 and λ1 = 1.
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Computing Eigenvectors: Example

Continuing the same example with

A =









2 1
2 3








,

for which we computed the eigenvalues to be λ = 4 and λ = 1.

For the eigenvalue λ = 4, we solve for the eigenvector by looking for a nonzero
solution to the equation (A − 4I)x = 0, or









2 − 4 1
2 3 − 4








x = 0.

or








−2 1
2 −1








x = 0.

One solution of this is x = (1, 2)T . Multiplying this by any nonzero scalar is also
an eigenvector corresponding to the eigenvalue λ.
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Computing Eigenvectors: Example (cont)

Continuing the same example with

A =









2 1
2 3








,

for which the eigenvalues we computed to be λ = 4 and λ = 1.

For the eigenvalue λ = 1, we solve for the eigenvector for looking for a nonzero
solution to the equation (A − I)x = 0, or









2 − 1 1
2 3 − 1








x = 0.

or








1 1
2 2








x = 0.

One solution of this is x = (1,−1)T . Multiplying this by any nonzero scalar is
also an eigenvector corresponding to the eigenvalue λ.

So we have that 4 is an eigenvalue with eigenvector (1, 2)T and 1 is an eigenvalue
with eigenvector (1,−1)T .
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Population Growth: Eigenvalues and Eigenvectors

Returning to the population growth example, let

A =









1.03 0.005
0.02 1.03









and take x0 = (6, 13)T (millions of people).

Then, A has eigenvalue λ1 = 1.04 with corresponding eigenvector x1 = (1, 2)
and eigenvalue λ2 = 1.02 with corresponding eigenvector x2 = (1,−2).

To write the solution in terms of the eigenvalues, we first want to write the initial
vector of populations as a sum of the eigenvectors, i.e. to write x0 = c1x1+c2x2.
Letting S be the matrix whose columns are the eigenvectors, we can use matrix
notation to write this as x0 = Sc to obtain c = S−1x0, which has the unique
solution c1 = 6.25 and c2 = −0.25.
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Aside: Where does A come from?

We are taking A as given, but here is a story about where the entries might
come from. Assume that the birth rate in Missouri is 6%, the death rate 1%,
and the rate at which people move to Illinois is 2%, which is where we get
A11 = 1 + 6% − 1% − 2% = 1.03 and A21 = 2%. Furthermore, we can
assume the birth rate in Illinois is 5%, the death rate 1.5%, and the rate at
which people move to Missouri is 0.5%, which is where we get A12 = 0.5% and
A22 = 1 + 5% − 1.5% − 0.5% = 1.03.

10



Population Growth: Solution

So the general solution of xt = Axt−1 (where A is given above) subject to the
initial condition x0 = (6, 13)T is

xt = Atx0

= At(6.25x1 − 0.25x2)

= 6.25Atx1 − 0.25Atx2

= 6.25 × 1.04tx1 − 0.25 × 1.02tx2

= 6.25 × 1.04t ×









1
2








− 0.25 × 1.02t ×









1
−2









=









6.25 × 1.04t − 0.25 × 1.02t

12.5 × 1.04t + 0.5 × 1.02t









Note that in the long run, the terms with 1.04t dominate the terms with 1.02t.
Therefore, in the long run both populations grow at a 4% rate, with Illinois’
population being about twice Missouri’s.
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Population Growth: Solution

We can see that the eigenvalue formulation makes the solution much clearer and
easier to interpret than simply writing xt = Atx0. The eigenvalue decomposition
is also an efficient way to compute the value at distant times. In an example
with a higher dimension (population in all 50 states or many countries), the
eigenvalues and eigenvectors would have to be computed numerically, but the
interpretation would be similar, since in the long term the population growth
would be the largest eigenvalue less one, and the population proportions would
tend to the proportions in the corresponding eigenvector.
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Properties of Eigenvalues and Eigenvectors

• Eigenvalues are only defined for square matrices.

• Eigenvalues can be imaginary or complex.

• The trace equals the sum of the eigenvalues.

• The determinant equals the product of the eigenvalues.

• Adding kI to A adds k to each eigenvalue, and leaves the corresponding
eigenvectors unchanged.
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Properties of Eigenvalues and Eigenvectors of Symmetric Matrices

• All eigenvalues are real.

• There is a complete set of N orthogonal eigenvectors.

• Eigenvectors are orthogonal if they have different eigenvalues.

• A is

– positive definite iff (∀i)λi > 0.

– positive semi-definite iff (∀i)λi ≥ 0.

– negative semi-definite iff (∀i)λi < 0.

– negative definite iff (∀i)λi ≤ 0.
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Summary

We have seen only one simple application of eigenvalues and eigenvectors. An-
other application is the determination of the definiteness of a matrix by looking at
the signs of the eigenvalues. Eigenvalues and eigenvectors play a role in differen-
tial equations in separating an equation system into independent components, in
statistics in looking at independent sources of risk (as in principal components),
in probability theory in the analysis of Markov Chains. We have necessarily just
touched the surface but hopefully you have some idea of how eigenvalues and
eigenvectors can be useful, and they should not be mysterious when you see them
again.

Ax = λx.

det(A − λI) = 0

(A − λI)x = 0
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