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P. Dybvig

Minimization problem (like in the slides):

Choose x ∈ ℜN to
minimize f(x)
subject to (∀i ∈ E)gi(x) = 0, and

(∀i ∈ I)gi(x) ≥ 0.

x = (x1, ..., xN) is a vector of choice variables.
f(x) is the scalar-valued objective function.
gi(x) = 0, i ∈ E are equality constraints.
gi(x) ≥ 0, i ∈ I are inequality constraints.
E

⋂
I = ∅

Kuhn-Tucker conditions:

∇f(x∗) =
∑

i∈E
⋃

I λi∇gi(x
∗)

(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0

The feasible solution x∗ is called regular if the set {∇gi(x
∗)|gi(x

∗) = 0} is a
linearly independent set. In particular, an interior solution is always regular.

If x∗ is regular and f and the gis are differentiable, the Kuhn-Tucker condi-
tions are necessary for feasible x∗ to be optimal. If the optimization problem
is convex, then the Kuhn-Tucker conditions are sufficient for an optimum.



Maximization problem:

Choose x ∈ ℜN to
maximize f(x)
subject to (∀i ∈ E)gi(x) = 0, and

(∀i ∈ I)gi(x) ≤ 0.

x = (x1, ..., xN) is a vector of choice variables.
f(x) is the scalar-valued objective function.
gi(x) = 0, i ∈ E are equality constraints.
gi(x) ≤ 0, i ∈ I are inequality constraints.
E

⋂
I = ∅

Kuhn-Tucker conditions:

∇f(x∗) =
∑

i∈E
⋃

I λi∇gi(x
∗)

(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0

(same theorems as on the previous page)
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example, Second Model in-class exercise from Lecture 1

Given pn > 0 and πn > 0 for n = 1, ..., N , and W0 > 0,
choose x = (x1, ..., xN) ∈ ℜN to
maximize

∑N
n=1

πnxn

subject to
∑N

n=1
pnxn = W0 and

(∀n)xn ≥ 0

p1

π1

< p2

π2

< ... < pN

πN

(states ordered from cheapest to most expensive)

∇f = (π1, ..., πN )
E = {0}, g0(x) =

∑N
n=1

pnxn − W0

∇g0 = (p1, p2, ..., pN )
I = {1, 2, ..., N}, for n > 0, gn(x) = −xn and ∇gn = (0, ..., 0,−1, 0, ...0) with
the −1 in the nth coordinant

(Note: LP ⇒ gradients do not vary with x.)

Kuhn-Tucker conditions:
∇f =

∑N
n=0

λn∇gn

for n = 1, ..., N , λn ≥ 0 and xnλn = 0

For n = 1, ..., N , πn = λ0pn − λn or λ0 = πn/pn + λn/pn. Because λn/pn ≥
0, λ0 ≥ max(πn/pn) = π1/p1. However, we cannot have λ0 > max πn/pn

because then complementary slackness would imply all xn are 0, which would
not satisfy the budget constraint. Therefore, we have λ0 = π1/p1 and λn =
((π1/p1) − (πn/pn))pn. This expression for λn is positive for n = 2, ..., N
(implying that xn = 0 for n = 2, ..., N) and zero for n = 1. Using the
budget constraint to compute x1 = W0/p1, we have the unique solution of
the Kuhn-Tucker conditions:

λ0 = π1/p1

For n = 2, ..., N , xn = 0 and λn = ((π1/p1) − (πn/pn))pn > 0
x1 = W0/p1 and λ1 = 0

It is easy to verify that this is a feasible solution satisfying the Kuhn-Tucker
conditions in a convex optimization. Therefore x is optimal.
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