Supplemental notes: Kuhn-Tucker first-order conditions
P. Dybvig

Minimization problem (like in the slides):
Choose $x \in \Re^{N}$ to
minimize $f(x)$
subject to $(\forall i \in \mathcal{E}) g_{i}(x)=0$, and $(\forall i \in \mathcal{I}) g_{i}(x) \geq 0$.
$x=\left(x_{1}, \ldots, x_{N}\right)$ is a vector of choice variables.
$f(x)$ is the scalar-valued objective function.
$g_{i}(x)=0, i \in \mathcal{E}$ are equality constraints.
$g_{i}(x) \geq 0, i \in \mathcal{I}$ are inequality constraints.
$\mathcal{E} \cap \mathcal{I}=\emptyset$
Kuhn-Tucker conditions:

$$
\begin{aligned}
& \nabla f\left(x^{*}\right)=\sum_{i \in \mathcal{E}} \bigcup \mathcal{I} \lambda_{i} \nabla g_{i}\left(x^{*}\right) \\
& (\forall i \in \mathcal{I}) \lambda_{i} \geq 0 \\
& \lambda_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

The feasible solution x^{*} is called regular if the set $\left\{\nabla g_{i}\left(x^{*}\right) \mid g_{i}\left(x^{*}\right)=0\right\}$ is a linearly independent set. In particular, an interior solution is always regular.

If x^{*} is regular and f and the g_{i} s are differentiable, the Kuhn-Tucker conditions are necessary for feasible x^{*} to be optimal. If the optimization problem is convex, then the Kuhn-Tucker conditions are sufficient for an optimum.

Maximization problem:
Choose $x \in \Re^{N}$ to
maximize $f(x)$
subject to $(\forall i \in \mathcal{E}) g_{i}(x)=0$, and $(\forall i \in \mathcal{I}) g_{i}(x) \leq 0$.
$x=\left(x_{1}, \ldots, x_{N}\right)$ is a vector of choice variables.
$f(x)$ is the scalar-valued objective function.
$g_{i}(x)=0, i \in \mathcal{E}$ are equality constraints.
$g_{i}(x) \leq 0, i \in \mathcal{I}$ are inequality constraints.
$\mathcal{E} \cap \mathcal{I}=\emptyset$
Kuhn-Tucker conditions:

$$
\begin{aligned}
& \nabla f\left(x^{*}\right)=\sum_{i \in \mathcal{E}} \cup \mathcal{I} \lambda_{i} \nabla g_{i}\left(x^{*}\right) \\
& (\forall i \in \mathcal{I}) \lambda_{i} \geq 0 \\
& \lambda_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

(same theorems as on the previous page)
example, Second Model in-class exercise from Lecture 1
Given $p_{n}>0$ and $\pi_{n}>0$ for $n=1, \ldots, N$, and $W_{0}>0$, choose $x=\left(x_{1}, \ldots, x_{N}\right) \in \Re^{N}$ to
$\operatorname{maximize} \sum_{n=1}^{N} \pi_{n} x_{n}$
subject to $\sum_{n=1}^{N} p_{n} x_{n}=W_{0}$ and
$(\forall n) x_{n} \geq 0$
$\frac{p_{1}}{\pi_{1}}<\frac{p_{2}}{\pi_{2}}<\ldots<\frac{p_{N}}{\pi_{N}}$
(states ordered from cheapest to most expensive)
$\nabla f=\left(\pi_{1}, \ldots, \pi_{N}\right)$
$\mathcal{E}=\{0\}, g_{0}(x)=\sum_{n=1}^{N} p_{n} x_{n}-W_{0}$
$\nabla g_{0}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)$
$\mathcal{I}=\{1,2, \ldots, N\}$, for $n>0, g_{n}(x)=-x_{n}$ and $\nabla g_{n}=(0, \ldots, 0,-1,0, \ldots 0)$ with the -1 in the nth coordinant
(Note: LP \Rightarrow gradients do not vary with x.)
Kuhn-Tucker conditions:
$\nabla f=\sum_{n=0}^{N} \lambda_{n} \nabla g_{n}$
for $n=1, \ldots, N, \lambda_{n} \geq 0$ and $x_{n} \lambda_{n}=0$
For $n=1, \ldots, N, \pi_{n}=\lambda_{0} p_{n}-\lambda_{n}$ or $\lambda_{0}=\pi_{n} / p_{n}+\lambda_{n} / p_{n}$. Because $\lambda_{n} / p_{n} \geq$ $0, \lambda_{0} \geq \max \left(\pi_{n} / p_{n}\right)=\pi_{1} / p_{1}$. However, we cannot have $\lambda_{0}>\max \pi_{n} / p_{n}$ because then complementary slackness would imply all x_{n} are 0 , which would not satisfy the budget constraint. Therefore, we have $\lambda_{0}=\pi_{1} / p_{1}$ and $\lambda_{n}=$ $\left(\left(\pi_{1} / p_{1}\right)-\left(\pi_{n} / p_{n}\right)\right) p_{n}$. This expression for λ_{n} is positive for $n=2, \ldots, N$ (implying that $x_{n}=0$ for $n=2, \ldots, N$) and zero for $n=1$. Using the budget constraint to compute $x_{1}=W_{0} / p_{1}$, we have the unique solution of the Kuhn-Tucker conditions:
$\lambda_{0}=\pi_{1} / p_{1}$
For $n=2, \ldots, N, x_{n}=0$ and $\lambda_{n}=\left(\left(\pi_{1} / p_{1}\right)-\left(\pi_{n} / p_{n}\right)\right) p_{n}>0$
$x_{1}=W_{0} / p_{1}$ and $\lambda_{1}=0$
It is easy to verify that this is a feasible solution satisfying the Kuhn-Tucker conditions in a convex optimization. Therefore x is optimal.

