Supplemental notes: Kuhn-Tucker first-order conditions P. Dybvig

Minimization problem (like in the slides):

Choose $x \in \Re^N$ to minimize f(x)subject to $(\forall i \in \mathcal{E})g_i(x) = 0$, and $(\forall i \in \mathcal{I})g_i(x) \ge 0.$

 $x = (x_1, ..., x_N)$ is a vector of choice variables. f(x) is the scalar-valued objective function. $g_i(x) = 0, i \in \mathcal{E}$ are equality constraints. $g_i(x) \ge 0, i \in \mathcal{I}$ are inequality constraints. $\mathcal{E} \cap \mathcal{I} = \emptyset$

Kuhn-Tucker conditions:

 $\nabla f(x^*) = \sum_{i \in \mathcal{E} \bigcup \mathcal{I}} \lambda_i \nabla g_i(x^*)$ $(\forall i \in \mathcal{I}) \lambda_i \ge 0$ $\lambda_i g_i(x^*) = 0$

The feasible solution x^* is called *regular* if the set $\{\nabla g_i(x^*)|g_i(x^*)=0\}$ is a linearly independent set. In particular, an interior solution is always regular.

If x^* is regular and f and the g_i s are differentiable, the Kuhn-Tucker conditions are necessary for feasible x^* to be optimal. If the optimization problem is convex, then the Kuhn-Tucker conditions are sufficient for an optimum. Maximization problem:

Choose $x \in \Re^N$ to maximize f(x)subject to $(\forall i \in \mathcal{E})g_i(x) = 0$, and $(\forall i \in \mathcal{I})g_i(x) \leq 0.$

 $x = (x_1, ..., x_N)$ is a vector of choice variables. f(x) is the scalar-valued objective function. $g_i(x) = 0, i \in \mathcal{E}$ are equality constraints. $g_i(x) \le 0, i \in \mathcal{I}$ are inequality constraints. $\mathcal{E} \cap \mathcal{I} = \emptyset$

Kuhn-Tucker conditions:

 $\nabla f(x^*) = \sum_{i \in \mathcal{E} \bigcup \mathcal{I}} \lambda_i \nabla g_i(x^*)$ $(\forall i \in \mathcal{I}) \lambda_i \ge 0$ $\lambda_i g_i(x^*) = 0$

(same theorems as on the previous page)

example, Second Model in-class exercise from Lecture 1

Given $p_n > 0$ and $\pi_n > 0$ for n = 1, ..., N, and $W_0 > 0$, choose $x = (x_1, ..., x_N) \in \Re^N$ to maximize $\sum_{n=1}^N \pi_n x_n$ subject to $\sum_{n=1}^N p_n x_n = W_0$ and $(\forall n) x_n > 0$

 $\begin{array}{l} \frac{p_1}{\pi_1} < \frac{p_2}{\pi_2} < \ldots < \frac{p_N}{\pi_N} \\ (\text{states ordered from cheapest to most expensive}) \end{array}$

$$\nabla f = (\pi_1, ..., \pi_N) \mathcal{E} = \{0\}, g_0(x) = \sum_{n=1}^N p_n x_n - W_0 \nabla g_0 = (p_1, p_2, ..., p_N) \mathcal{I} = \{1, 2, ..., N\}, \text{ for } n > 0, g_n(x) = -x_n \text{ and } \nabla g_n = (0, ..., 0, -1, 0, ...0) \text{ with the } -1 \text{ in the } n \text{th coordinant}$$

(Note: LP \Rightarrow gradients do not vary with x.)

Kuhn-Tucker conditions: $\nabla f = \sum_{n=0}^{N} \lambda_n \nabla g_n$ for $n = 1, ..., N, \lambda_n \ge 0$ and $x_n \lambda_n = 0$

For n = 1, ..., N, $\pi_n = \lambda_0 p_n - \lambda_n$ or $\lambda_0 = \pi_n/p_n + \lambda_n/p_n$. Because $\lambda_n/p_n \ge 0$, $\lambda_0 \ge \max(\pi_n/p_n) = \pi_1/p_1$. However, we cannot have $\lambda_0 > \max(\pi_n/p_n)$ because then complementary slackness would imply all x_n are 0, which would not satisfy the budget constraint. Therefore, we have $\lambda_0 = \pi_1/p_1$ and $\lambda_n = ((\pi_1/p_1) - (\pi_n/p_n))p_n$. This expression for λ_n is positive for n = 2, ..., N (implying that $x_n = 0$ for n = 2, ..., N) and zero for n = 1. Using the budget constraint to compute $x_1 = W_0/p_1$, we have the unique solution of the Kuhn-Tucker conditions:

$$\lambda_0 = \pi_1/p_1$$

For $n = 2, ..., N, x_n = 0$ and $\lambda_n = ((\pi_1/p_1) - (\pi_n/p_n))p_n > 0$
 $x_1 = W_0/p_1$ and $\lambda_1 = 0$

It is easy to verify that this is a feasible solution satisfying the Kuhn-Tucker conditions in a convex optimization. Therefore x is optimal.