Problem Set 3: Homotheticity and Bellman Equation
FIN 539 Mathematical Finance
P. Dybvig

1. Homotheticity Consider the HARA (Hyperbolic Absolute Risk Aversion) felicity (or utility) function $u(c)=(c-\underline{c})^{1-R} /(1-R)$, where \underline{c} is the subsistence consumption (the minimal consumption needed to survive) and $R>0, R \neq 1$, is the relative risk aversion for the increase of consumption above the subsistence level. Then we will study the following optimization problem:

Given w_{0},
choose portfolio θ_{t}, consumption c_{t}, and wealth w_{t} to maximize $E\left[\int_{t=0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t\right]$ (expected utility of lifetime consumption) subject to:
$d w_{t}=r w_{t} d t+\theta_{t}\left((\mu-r) d t+\sigma d Z_{t}\right)-c_{t} d t$ (budget constraint)
$(\exists K \in \Re)(\forall t) w_{t} \geq-K$ (limited borrowing)
Prove that the value function for this problem is of the form $V(w) \equiv(w-$ $\underline{c} / r)^{1-R} v$ for some constant v. Assume that $w_{0}>\underline{c} / r$ so there is enough wealth to pay for subsistence consumption with something left over. (Hint: note that wealth of \underline{c} / r can be thought of as being committed to funding the subsistence consumption \underline{c} so "free" or "discretionary" wealth at t is $w_{t}-\underline{c}$. Define new choice variables: portfolio choice $\hat{\theta} \equiv \theta_{t} /\left(w_{0}-\underline{c} / r\right)$ normalized by initial free wealth, consumption $\hat{c}_{t} \equiv\left(c_{t}-\underline{c}\right) /\left(w_{0}-\underline{c} / r\right)$ in excess of the subsistence consumption, normalized by initial free wealth, and free wealth $\hat{w}_{t} \equiv\left(w_{t}-\underline{c} / r\right) /\left(w_{0}-\underline{c} / r\right)$ normalized by initial free wealth.)

Define $\hat{\theta} \equiv \theta_{t} /\left(w_{0}-\underline{c} / r\right), \hat{c}_{t} \equiv\left(c_{t}-\underline{c}\right) /\left(w_{0}-\underline{c} / r\right)$, and $\hat{w}_{t} \equiv\left(w_{t}-\underline{c} / r\right) /\left(w_{0}-\right.$ $\underline{c} / r)$, and let $\hat{K} \equiv(K+\underline{c} / r) /\left(w_{0}-\underline{c} / r\right)$. Then we can rewrite the choice problem as:

Given w_{0},
choose $\hat{\theta}_{t}, \hat{c}_{t}$, and \hat{w}_{t} to
maximize $\left(w_{0}-\underline{c} / r\right)^{1-R} E\left[\int_{t=0}^{\infty} e^{-\rho t} \frac{\hat{c}_{t}{ }^{1-R}}{1-R} d t\right]$
subject to:
$d \hat{w}_{t}=r \hat{w}_{t} d t+\hat{\theta}_{t}\left((\mu-r) d t+\sigma d Z_{t}\right)-\hat{c}_{t} d t$
$(\exists \hat{K} \in \Re)(\forall t) \hat{w}_{t} \geq-\hat{K}$.

Note that w_{0} does not appear except in the positive factor $\left(w_{0}-\underline{c} / r\right)^{1-R}$ multiplying the objective function. Therefore, this factor does not affect the optimal choice but only multiplies the value by this factor. Therefore, the value of the problem is $\left(w_{0}-\underline{c} / r\right)^{1-R} v$, where v is the optimized value of $E\left[\int_{t=0}^{\infty} e^{-\rho t} \frac{\hat{t}_{t}^{1-R}}{1-R} d t\right]$, which is the value of the problem when $\left(w_{0}-\underline{c} / r\right)^{1-R}=1$.
2. Bellman Equation Consider the optimization problem in Problem 1. (Note: this problem can be solved even if you did not solve Problem 1.)
A. Write down the martingale M_{t} for this problem.
$M_{t} \equiv \int_{s=0}^{t} e^{-\rho s} \frac{\left(c_{s}-\underline{c}\right)^{1-R}}{1-R} d s+e^{-\rho t} V\left(w_{t}\right)$
B. What does M_{t} represent given the optimal policies for portfolio, consumption, and wealth?
the conditional expectation at t of the integral defining the objective function if we always follow the optimal policies

What does M_{t} represent given suboptimal policies?
the conditional expectation at t of the integral defining the objective function if we follow the suboptimal policies until t and the optimal policies from then on

For $t>s$, what is $E\left[M_{s}\right]-E\left[M_{t}\right]$?
the loss, in units of change of the objective function, from following this policy from time s to time t, compared with following the optimal policy. The loss is 0 for the optimal policy.
C. Derive the Bellman equation for this problem.

$$
\begin{aligned}
d M_{t}= & e^{-\rho t} \frac{\left(c_{t}-\underline{c}\right)^{1-R}}{1-R} d t-\rho e^{-\rho t} V\left(w_{t}\right) d t+e^{-\rho t} V^{\prime}\left(w_{t}\right) d w_{t} \\
& +\frac{1}{2} e^{-\rho t} V^{\prime \prime}\left(w_{t}\right)\left(d w_{t}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & e^{-\rho t}\left(\frac{\left(c_{t}-c\right.}{c}\right)^{1-R} \\
1-R & \rho V\left(w_{t}\right)+\left(r w_{t}+\theta_{t}(\mu-r)-c_{t}\right) V^{\prime}\left(w_{t}\right) \\
& \left.+\frac{1}{2} V^{\prime \prime}\left(w_{t}\right) \theta_{t}^{2} \sigma^{2}\right) d t+V^{\prime}\left(w_{t}\right) \theta_{t} \sigma d Z_{t}
\end{aligned}
$$

Now the drift $E[d M] / d t$ is zero for the optimal strategy and zero or negative for all strategies. Therefore, the maximum drift over all choices of c_{t} and θ_{t} is equal to zero, which is the Bellman equation.

$$
\max _{c, \theta}\left(\frac{(c-\underline{c})^{1-R}}{1-R}-\rho V+(r w+\theta(\mu-r)-c) V^{\prime}+\frac{\theta^{2} \sigma^{2}}{2} V^{\prime \prime}\right)=0
$$

D. Solve for optimal c_{t} and θ_{t} in terms of derivatives of V, and substitute the optimized values into the Bellman equation.

FOC for c :

$$
(c-\underline{c})^{-R}-V^{\prime}=0
$$

so

$$
c^{*}=\underline{c}+\left(V^{\prime}\right)^{-1 / R}
$$

FOC for θ :

$$
(\mu-r) V^{\prime}+\theta \sigma^{2} V^{\prime \prime}=0
$$

so

$$
\theta^{*}=-\frac{\mu-r}{\sigma^{2}} \frac{V^{\prime}}{V^{\prime \prime}}
$$

Optimized Bellman equation:

$$
\frac{R\left(V^{\prime}\right)^{1-1 / R}}{1-R}-\rho V+r(w-\underline{c} / r) V^{\prime}-\frac{(\mu-r)^{2}}{2 \sigma^{2}} \frac{\left(V^{\prime}\right)^{2}}{V^{\prime \prime}}=0
$$

E. From Problem 1, we can write the value function in the form $V(w)=$ $\frac{k}{1-R}(w-\underline{c} / r)^{1-R}$, where $k=(1-R) v$. Using this formula, solve for the optimal c_{t} and θ_{t} in terms of w_{t} and the parameters.

$$
\begin{aligned}
& V(w)=\frac{k}{1-R}(w-\underline{c} / r)^{1-R} \\
& V^{\prime}(w)=k(w-\underline{c} / r)^{-R} \\
& V^{\prime \prime}(w)=-R k(w-\underline{c} / r)^{-R-1} \\
& c^{*}=\underline{c}+\left(V^{\prime}\right)^{-1 / R}=\underline{c}+(w-\underline{c} / r) k^{-1 / R} \\
& \theta^{*}=-\frac{\mu-r}{\sigma^{2}} \frac{V^{\prime}}{V^{\prime \prime}}=-\frac{\mu-r}{\sigma^{2}} \frac{(w-\underline{c} / r)^{-R} k}{-R(w-\underline{c} / r)^{-R-1} k} \\
& \quad=\frac{\mu-r}{\sigma^{2} R}(w-\underline{c} / r)
\end{aligned}
$$

F. Solve the Bellman equation for k.

$$
\begin{aligned}
0 & =\frac{R\left(V^{\prime}\right)^{1-1 / R}}{1-R}-\rho V+r(w-\underline{c} / r) V^{\prime}-\frac{(\mu-r)^{2}}{2 \sigma^{2}} \frac{\left(V^{\prime}\right)^{2}}{V^{\prime \prime}} \\
& =\frac{(w-\underline{c} / r)^{1-R} k}{1-R}\left(R k^{-1 / R}-\rho+(1-R) r+\frac{(\mu-r)^{2}}{2 \sigma^{2}} \frac{1-R}{R}\right) \\
k & =\left(\frac{\rho}{R}+\left(1-\frac{1}{R}\right) r+\left(1-\frac{1}{R}\right) \frac{(\mu-r)^{2}}{2 \sigma^{2} R}\right)^{-R}
\end{aligned}
$$

