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1. Homotheticity Consider the log felicity (or utility) function u(c) =
log(c). Then we will study variations of the following multi-asset optimization
problem:

Given w0,
choose adapted risky asset proportions θt, consumption ct, and wealth wt, to
maximize E[

∫∞
t=0 e

−ρtu(ct)dt] (expected utility of lifetime consumption)
subject to:
dwt = rwtdt+ wtθt

′((µ− r1)dt+ ΓdZt)− ctdt (budget constraint)
wt ≥ 0 (no borrowing)

The choice variables are three processes: the vector of risky asset proportions
θt ∈ ℜN , real-valued consumption ct, and real-valued wealth wt. The con-
stant ρ is the pure rate of time discount, the constant r is the instantaneous
riskfree rate of interest, µ ∈ ℜN is the constant vector of mean risky asset
returns, Γ is the constant N × k matrix of loadings of the returns on the
different risks, and 1 is the N -vector of 1’s. Assume the local covariance
ΓΓ′ of returns is positive definite, and that there is at least one asset n with
µn > r.

A. Show that the form of the value function for this problem is V (w) =
v + log(w)/ρ for some constant v.

Let θ̂t ≡ θt (no need to change since it is already normalized by wealth),
ĉt ≡ ct/w0, and ŵt ≡ wt/w0. Then we can write the problem as

Given w0,
choose adapted θ̂t, ĉt, and ŵt to
maximize E[

∫∞
t=0 e

−ρt log(w0ĉt)dt]
subject to:
dŵt = rŵtdt+ ŵtθ̂t

′
((µ− r1)dt+ ΓdZt)− ĉtdt

ŵt ≥ 0 (no borrowing)



The objective function can be written as

E[
∫ ∞

t=0
e−ρt log(w0ĉt)dt] =

∫ ∞

t=0
e−ρt log(w0)dt+ E[

∫ ∞

t=0
e−ρt log(ĉt)dt]

= log(w0)/ρ+ E[
∫ ∞

t=0
e−ρt log(ĉt)dt].

Writing the problem this way, the constraints do not depend on w0 and
the objective function depends on w0 only through the additive constant
log(w0)/ρ. Therefore, the optimal choices of θ̂t, ĉt, and ŵt do not depend on
w and we have that V (w) = v + log(w)/ρ, where v is the optimized value of
the second term, which is V (1).

B. Does the result in part A hold (perhaps for a different constant v) if we
add the constraint

(∀i, t)(0 ≤ θit ≤ Ki)

where each Ki > 0 is a given constant? Explain why or why not. (If not, it
suffices to show where the usual argument breaks down.)

Yes, it does, since θ̂t = θt and the new constraints in terms of the transformed
variables do not depend on w.

C. Does the result in part A hold (perhaps for a different constant v) if we
add the constraint

(∀t)(0 ≤ θt ≤ wtK)

where K > 0 is a given constant. Explain why or why not. (If not, it suffices
to show that the usual argument breaks down.)

No, because the constraint in the transformed variables becomes

(∀t)(0 ≤ θ̂t ≤ wŵtK),
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which does depend on w. In particular, this is very binding when w is very
small, but not very binding when w is large. Since there is some asset with
µi > r, holding a small positive amount of that asset would dominate just
holding the riskless asset, so the constraint is strictly binding for w sufficiently
small.

2. Bellman Equation Consider the optimization problem in Problem 1,
without either constraint described in Part B or Part C. (Note: this problem
can be solved even if you did not solve Problem 1.)

A. Write down the process Mt for this problem.

Mt ≡
∫ t

s=0
e−ρs log(cs)ds+ e−ρtV (wt)

B. What does Mt represent given the optimal policies for portfolio, consump-
tion, and wealth? What does Mt represent given suboptimal policies? For
t < s, what is E[Mt]− E[Ms]?

Given the optimal policy, Mt is the conditional expectation at t of the “re-
alized utility” (the quantity in the expectation of the objective function)
for the optimal strategy. Given a suboptimal strategy, it is the conditional
expectation at t of following the suboptimal strategy until t and then the op-
timal strategy from then on. E[Mt]−E[Ms] is the decrease in the objective
function due to mistakes made between time t and time s.

C. Derive the Bellman equation for this problem.

Use Itô’s lemma and the budget constraint to compute dMt:

Mt =
∫ t

s=0
e−ρs log(cs)ds+ e−ρtV (wt),

we can compute

E

[
dM

e−ρtdt

]
= log(c)− ρV + (rw + wθ′(µ− r1)− c)Vw

3



+
1

2
tr(wθ′ΓΓ′θwVww),

where θ′ΓΓ′θ, w, and Vww are scalars, so the Bellman equation is

max
c,θ

(
log(c)− ρV + ((r + θ′(µ− r1))w − c)Vw +

w2Vww

2
θ′ΓΓ′θ

)
= 0

D. Solve for optimal ct and θt in terms of derivatives of V .

The terms involving θ are

θ′(µ− r1)wVw +
w2Vww

2
θ′ΓΓ′θ,

where ΓΓ′ is the local covariance matrix of security returns. The first-order
condition for optimal θ is

(µ− r1)wVw + w2ΓΓ′θVww = 0

As before, u′(c) = Vw so c = I(Vw), but now the optimal portfolio is

θ∗ =
1

−wVww/Vw

(ΓΓ′)−1(µ− r1)

The optimization is locally a mean-variance problem. Note the coefficient of
relative risk aversion of the value function in the denominator.

E. From Problem 1, we can write the value function in the form V (w) =
v + log(w)/ρ. Using this formula, solve for the optimal ct and θt in terms of
wt and the parameters.

For some v,

V (w) = v + log(w)/ρ
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Vw(w) =
1

ρw

Vww(w) = − 1

ρw2

Now, u(c) = log(c), u′(c) = 1/c, and I(z) = 1/z. Therefore,

ct
∗ =

1

Vw(wt)
= ρw

θt
∗ =

1

−wVww/Vw

(ΓΓ′)−1(µ− r1)

= (ΓΓ′)−1(µ− r1).

F. Substitute the optimal portfolio and consumption policies into the Bellman
equation, and solve the optimized Bellman equation for v.

0 = log(ρw)− ρ(v + log(w)/ρ) + ((r + (µ− r1)′(ΓΓ′)−1(µ− r1))w

−ρw)
1

ρw
− w2

2ρw2
(µ− r1)′(ΓΓ′)−1ΓΓ′(ΓΓ′)−1(µ− r1)

= log(ρ) + log(w)− ρv − log(w) + r − ρ

ρ

+
1

2ρ
(µ− r1)′(ΓΓ′)−1(µ− r1).

Therefore,

v =
1

ρ

(
log(ρ) + r − ρ

ρ
+

1

2ρ
(µ− r1)′(ΓΓ′)−1(µ− r1)

)
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Recall that this is the value function V (1) when w = 1. The first term in
parentheses is what we get if wealth never changes and we consume ρ forever.
The second term is the value of consumption changing over time because the
interest rw funds more or less than the consumption ρw. The third term in
parentheses is the value of investing in the market, which is larger the further
µ is from r1 and smaller the larger the variances are.
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