Problem Set 4: Multi-asset portfolio problem FIN 539 Mathematical Finance P. Dybvig

1. Homotheticity Consider the log felicity (or utility) function $u(c) = \log(c)$. Then we will study variations of the following multi-asset optimization problem:

Given w_0 ,

choose adapted risky asset proportions θ_t , consumption c_t , and wealth w_t , to maximize $E[\int_{t=0}^{\infty} e^{-\rho t} u(c_t) dt]$ (expected utility of lifetime consumption) subject to: $dw_t = rw_t dt + w_t \theta_t'((\mu - r\mathbf{1})dt + \Gamma dZ_t) - c_t dt$ (budget constraint) $w_t \ge 0$ (no borrowing)

The choice variables are three processes: the vector of risky asset proportions $\theta_t \in \Re^N$, real-valued consumption c_t , and real-valued wealth w_t . The constant ρ is the pure rate of time discount, the constant r is the instantaneous riskfree rate of interest, $\mu \in \Re^N$ is the constant vector of mean risky asset returns, Γ is the constant $N \times k$ matrix of loadings of the returns on the different risks, and **1** is the *N*-vector of 1's. Assume the local covariance $\Gamma\Gamma'$ of returns is positive definite, and that there is at least one asset n with $\mu_n > r$.

A. Show that the form of the value function for this problem is $V(w) = v + \log(w)/\rho$ for some constant v.

Let $\hat{\theta}_t \equiv \theta_t$ (no need to change since it is already normalized by wealth), $\hat{c}_t \equiv c_t/w_0$, and $\hat{w}_t \equiv w_t/w_0$. Then we can write the problem as

Given w_0 , choose adapted $\hat{\theta}_t$, \hat{c}_t , and \hat{w}_t to maximize $E[\int_{t=0}^{\infty} e^{-\rho t} \log(w_0 \hat{c}_t) dt]$ subject to: $d\hat{w}_t = r\hat{w}_t dt + \hat{w}_t \hat{\theta}_t'((\mu - r\mathbf{1})dt + \Gamma dZ_t) - \hat{c}_t dt$ $\hat{w}_t \ge 0$ (no borrowing) The objective function can be written as

$$\begin{split} E[\int_{t=0}^{\infty} e^{-\rho t} \log(w_0 \hat{c}_t) dt] &= \int_{t=0}^{\infty} e^{-\rho t} \log(w_0) dt + E[\int_{t=0}^{\infty} e^{-\rho t} \log(\hat{c}_t) dt] \\ &= \log(w_0) / \rho + E[\int_{t=0}^{\infty} e^{-\rho t} \log(\hat{c}_t) dt]. \end{split}$$

Writing the problem this way, the constraints do not depend on w_0 and the objective function depends on w_0 only through the additive constant $\log(w_0)/\rho$. Therefore, the optimal choices of $\hat{\theta}_t$, \hat{c}_t , and \hat{w}_t do not depend on w and we have that $V(w) = v + \log(w)/\rho$, where v is the optimized value of the second term, which is V(1).

B. Does the result in part A hold (perhaps for a different constant v) if we add the constraint

$$(\forall i, t) (0 \le \theta_{it} \le K_i)$$

where each $K_i > 0$ is a given constant? Explain why or why not. (If not, it suffices to show where the usual argument breaks down.)

Yes, it does, since $\hat{\theta}_t = \theta_t$ and the new constraints in terms of the transformed variables do not depend on w.

C. Does the result in part A hold (perhaps for a different constant v) if we add the constraint

$$(\forall t)(0 \le \theta_t \le w_t K)$$

where K > 0 is a given constant. Explain why or why not. (If not, it suffices to show that the usual argument breaks down.)

No, because the constraint in the transformed variables becomes

$$(\forall t)(0 \le \hat{\theta}_t \le w\hat{w}_t K),$$

which does depend on w. In particular, this is very binding when w is very small, but not very binding when w is large. Since there is some asset with $\mu_i > r$, holding a small positive amount of that asset would dominate just holding the riskless asset, so the constraint is strictly binding for w sufficiently small.

2. Bellman Equation Consider the optimization problem in Problem 1, without either constraint described in Part B or Part C. (Note: this problem can be solved even if you did not solve Problem 1.)

A. Write down the process M_t for this problem.

$$M_t \equiv \int_{s=0}^t e^{-\rho s} \log(c_s) ds + e^{-\rho t} V(w_t)$$

B. What does M_t represent given the optimal policies for portfolio, consumption, and wealth? What does M_t represent given suboptimal policies? For t < s, what is $E[M_t] - E[M_s]$?

Given the optimal policy, M_t is the conditional expectation at t of the "realized utility" (the quantity in the expectation of the objective function) for the optimal strategy. Given a suboptimal strategy, it is the conditional expectation at t of following the suboptimal strategy until t and then the optimal strategy from then on. $E[M_t] - E[M_s]$ is the decrease in the objective function due to mistakes made between time t and time s.

C. Derive the Bellman equation for this problem.

Use Itô's lemma and the budget constraint to compute dM_t :

$$M_t = \int_{s=0}^t e^{-\rho s} \log(c_s) ds + e^{-\rho t} V(w_t),$$

we can compute

$$E\left[\frac{dM}{e^{-\rho t}dt}\right] = \log(c) - \rho V + (rw + w\theta'(\mu - r\mathbf{1}) - c)V_u$$

$$+\frac{1}{2}\mathrm{tr}(w\theta'\Gamma\Gamma'\theta wV_{ww}),$$

where $\theta' \Gamma \Gamma' \theta$, w, and V_{ww} are scalars, so the Bellman equation is

$$\max_{c,\theta} \left(\log(c) - \rho V + ((r + \theta'(\mu - r\mathbf{1}))w - c)V_w + \frac{w^2 V_{ww}}{2}\theta'\Gamma\Gamma'\theta \right) = 0$$

D. Solve for optimal c_t and θ_t in terms of derivatives of V.

The terms involving θ are

$$\theta'(\mu - r\mathbf{1})wV_w + \frac{w^2 V_{ww}}{2}\theta'\Gamma\Gamma'\theta,$$

where $\Gamma\Gamma'$ is the local covariance matrix of security returns. The first-order condition for optimal θ is

$$(\mu - r\mathbf{1})wV_w + w^2\Gamma\Gamma'\theta V_{ww} = 0$$

As before, $u'(c) = V_w$ so $c = I(V_w)$, but now the optimal portfolio is

$$\theta^* = \frac{1}{-wV_{ww}/V_w} (\Gamma\Gamma')^{-1} (\mu - r\mathbf{1})$$

The optimization is locally a mean-variance problem. Note the coefficient of relative risk aversion of the value function in the denominator.

E. From Problem 1, we can write the value function in the form $V(w) = v + \log(w)/\rho$. Using this formula, solve for the optimal c_t and θ_t in terms of w_t and the parameters.

For some v,

$$V(w) = v + \log(w)/\rho$$

$$V_w(w) = \frac{1}{\rho w}$$
$$V_{ww}(w) = -\frac{1}{\rho w^2}$$

Now, $u(c) = \log(c)$, u'(c) = 1/c, and I(z) = 1/z. Therefore,

$$c_t^* = \frac{1}{V_w(w_t)} = \rho w$$

$$\theta_t^* = \frac{1}{-wV_{ww}/V_w} (\Gamma\Gamma')^{-1} (\mu - r\mathbf{1}) \\ = (\Gamma\Gamma')^{-1} (\mu - r\mathbf{1}).$$

F. Substitute the optimal portfolio and consumption policies into the Bellman equation, and solve the optimized Bellman equation for v.

$$0 = \log(\rho w) - \rho(v + \log(w)/\rho) + ((r + (\mu - r\mathbf{1})'(\Gamma\Gamma')^{-1}(\mu - r\mathbf{1}))w - \rho w)\frac{1}{\rho w} - \frac{w^2}{2\rho w^2}(\mu - r\mathbf{1})'(\Gamma\Gamma')^{-1}\Gamma\Gamma'(\Gamma\Gamma')^{-1}(\mu - r\mathbf{1}) = \log(\rho) + \log(w) - \rho v - \log(w) + \frac{r - \rho}{\rho} + \frac{1}{2\rho}(\mu - r\mathbf{1})'(\Gamma\Gamma')^{-1}(\mu - r\mathbf{1}).$$

Therefore,

$$v = \frac{1}{\rho} \left(\log(\rho) + \frac{r-\rho}{\rho} + \frac{1}{2\rho} (\mu - r\mathbf{1})' (\Gamma\Gamma')^{-1} (\mu - r\mathbf{1}) \right)$$

Recall that this is the value function V(1) when w = 1. The first term in parentheses is what we get if wealth never changes and we consume ρ forever. The second term is the value of consumption changing over time because the interest rw funds more or less than the consumption ρw . The third term in parentheses is the value of investing in the market, which is larger the further μ is from $r\mathbf{1}$ and smaller the larger the variances are.