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Fundamental Theorem of Asset Pricing (FTAP)
The following are equivalent:

• Absence of riskless arbitrage
• Existence of a consistent positive linear pricing rule
• Existence of an optimal choice for some hypothetical agent who

prefers more to less

Originally in
Dybvig, Philip H., and Stephen A. Ross, 1987, “Arbitrage,” a contri-
bution to The New Palgrave: a Dictionary of Economics 1, New York:
Stockton Press, 1987, 100-106.

This exposition follows
Dybvig, Philip H., and Stephen A. Ross, 2003, “Arbitrage, State Prices,
and Portfolio Theory,” Handbook of the Economics of Finance: Asset
Pricing (Volume 1B), George M. Constantinedes, Milton Harris, and
Rene M. Stulz, ed., North Holland, 605–637.
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FTAP – notation
N : number of securities
Ω: number of states of nature
W ∈ ℜ initial wealth
C ∈ ℜΩ+1 consumption vector
P ∈ ℜN : vector of security prices
Θ ∈ ℜN : vector of portfolio choices
X ∈ ℜΩ×N : matrix of security payoffs

Budget constraint:

C =

 W
0

 +
 −P ′

X

Θ

The first row has cash flows at time 0, and the the remaining rows have
cash flows across states at time 1.
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FTAP – arbitrage
An arbitrage is a money pump: something for nothing.

A net trade η, the change in portfolio choice from Θ to Θ+ η, gives us
a change in consumption

∆C =

 W
0

 +
 −P ′

X

 (Θ + η)−

 W
0

 +
 −P ′

X

Θ
 =

 −P ′

X

 η

An arbitrage opportunity is a net trade that increases consumption in
some contingency and never reduces consumption:

 −P ′

X

 η > 0

my notation for vector inequalities:
X ≥ Y : (∀i)Xi ≥ Yi

X > Y : X ≥ Y and X ̸= Y
X >> Y : (∀i)Xi > Yi
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FTAP – choice problem and pricing
Generic problem Choose Θ to
maximize U(C) s.t.

C =

 W
0

 +
 −P ′

X

Θ

We are interested in strictly increasing preferences. The utility function
U : ℜΩ+1 → ℜ is called strictly increasing if (∀c, c′)((c > c′) ⇒
(U(c) > U(c′)).

Pricing:

P ′ = p′X

L(x) = p′X is a consistent linear pricing rule. We are interested in a
consistent positive linear pricing rule, p >> 0.
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Fundamental Theorem of Asset Pricing (FTAP): statement
The following are equivalent:

(i) Absence of riskless arbitrage: ( ̸ ∃η)

 −P ′

X

 η > 0



(ii) Existence of a consistent positive linear pricing rule: (∃p >> 0)(P ′ =
p′X)

(iii) Existence of a hypothetical agent who prefers more to less and has
an optimal choice: there exists strictly increasing U and W such that
the generic problem has a solution.

Proof: (i)⇒(ii) separation theorem
(ii)⇒(iii) by construction
(iii)⇒(i) by contradiction

Note: This is true as stated in finite dimensions, but requires more
structure in general.
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Pricing Rule Representation Theorem
The positive linear pricing rule can be represented equivalently using

(i) an abstract linear function L(c) that is positive: (c > 0) ⇒ (L(c) >
0)

(ii) positive state prices p >> 0: L(c) = ∑Ω
ω=1 pωcω

(iii) positive risk-neutral probabilities π∗
i summing to 1 with associated

shadow risk-free rate r∗: L(c) = (1+r∗)−1E∗[cω] = (1+r∗)−1 ∑Ω
ω=1 π

∗
ωcω

(iv) positive state-price densities ξ >> 0: L(c) = E[ξc] (also called
stochastic discount factor or pricing kernel)
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Complete markets
When the pricing rule is unique, we say markets are complete. This is
the case in which the one-shot approach is simplest, especially if we use
the state-price density (stochastic discount factor) approach.

Choose {cω} to
maximize ∑Ω

ω=1 πωu(cω)
subject to ∑Ω

ω=1 πωξωcω = W0

FOC: u′(cω) = λξω

In many periods (time separable vN-M utility):

Choose adapted {ct} to
maximize E[∑T

t=0 δ
tu(ct)] subject to E[∑T

t=0 ξtct] = W0

FOC: δtu′(ct) = λξt

The portfolio strategy solves an option replication problem.
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Mini math review: multidimensional Itô’s lemma
Let H : ℜd × [0, T ] → ℜ with continuous partial derivatives Hx(x, t),
Hxx(x, t), and Ht(x, t). Let dXt = g(t)dt + G(t)dZt, where Xt is a
d-dimensional process and Zt is an m-dimentional standard Wiener pro-
cess. Then Yt ≡ H(Xt, t) is an Itô process with stochastic differential

dYt = Htdt +H ′
xdX +

1

2
tr(GG′Hxx)dt

where, for any symmetric matrix A, tr(A) denotes the trace, which is
the sum ∑

iAii of its diagonal elements.

Note: if H takes values in ℜk, we can apply the result elementwise.
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What is the trace?
The trace tr(A) of the square matrix A is the sum of its diagonal el-
ements, ∑

iAii. The trace equals the sum of the eigenvalues.1 For
matrices A i× j and B j × i, then tr(AB) = tr(BA). For matrices C
i × j, D j × k, and E k × i, tr(CDE) = tr(DEC) = tr(ECD). If
F and G both n× n, tr(F +G) = tr(F ) + tr(G) and tr(F ′) = tr(F ).
Also, if X is n× n, d(tr(X))/dX = In×n and d(tr(AB))/dA = B′.

1It is also useful to know that the determinant is the product of the eigenvalues.
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Stochastic discount factor in continuous time
In continuous time, the stochastic discount factor (or state-price density
or pricing kernel) is an adapted process ξt such that for “all” reinvested
portfolios2 having a price process Pt, we have that for s < t,

Es

ξt
ξs
Pt

 = Ps,

or equivalently, since ξs is known at time s,

Es[ξtPt] = ξsPs.

Therefore, ξtPt is a martingale for all re-invested marketed assets. Sup-
pose that randomness is driven by an underlying k-dimensional Wiener
process Zt. The asset returns are given by dSit/Sit = µitdt + γitdZt,
for i = 0, ..., N . Asset 0 is the riskless asset where µ0t = rt is the
riskfree rate and γ0t = 0. Since ξtPit is a martingale for all reinvested
portfolioss, E[d(ξtPit)] = 0.

2To make this rigorous, we would have to specify a set of feasible trading strategies to rule out bubbles. A simply but unappealing
choice (because ξ is endogenous) is the set of assets for which E[ξP ] is a martingale.
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Deriving the stochastic discount factor
Let’s suppose the stochastic discount factor follows the process

dξt = ξt(µξdt + γξ
′dZt).

Now, we can apply the multivariate Itô’s lemma, letting X = (ξ, Pi)
′,

and H(X) = H(ξ, Pi) = ξPi, then f = (ξµξ, Piµi)
′ and G = (ξγξ, Piγi)

′:

0 = E[d(ξtPit)]

= E[Pitdξt + ξtdPit +
1

2
tr (GG′Hxx) dt]

= Pitξt (µξ + µit) dt + tr


 ξ2t γξ

′γξ ξtPiγξ
′γi

ξtPiγi
′γξ P 2

i γi
′γi


 0 1
1 0


 dt

= Pitξt (µξ + µit) dt +
1

2
tr

 ξtPiγξ
′γi ξ2t γξ

′γξ
P 2
i γi

′γi ξtPiγi
′γξ

 dt
= Pitξt (µξt + µit + γi

′γξ) dt
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Deriving the stochastic discount factor: continued
Since (∀i)(µξt+µit+γi

′γξ = 0), we can use the bond n = 0 (with µ0 = r
and γ0 = 0) to infer that µξ = −r. Then we have (∀n)(µit−r+γi

′γξ =
0). As a vector equation (omitting n = 0), we have

µ− r1 + Γγξ = 0,

where

Γ = (γ1|γ2| . . . |γN)′.

Now Γ is an N × k matrix. If N = k and Γ is invertible, then markets
are locally complete and

γξ = −Γ−1(µ− r1).

dξ/ξ = −rdt− (µ− r1)′(Γ′)−1dZt

Assuming these processes are not too wild, this will mean that ξ is
unique given the initial condition ξ0 = 1, and markets are complete.
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Univariate stochastic discount factor: fixed coefficients
Our derivation of the stochastic discount factor is consistent with the
riskfree rate r, vector of mean returns µ, and risk loadings Γ being
adapted processes. However, the case of constants leads to the “lognor-
mal model” which is interesting and useful. We will further specialize
to the case of a single risky asset. Assuming the riskless asset has a
constant return r and the risky asset has a constant mean return µ and
constant risk exposure σ (so that dS/S = µdt + σdZt), we have

dξt/ξt = −rdt− κdZt,

where κ ≡ (µ− r)/σ is the Sharpe ratio. This implies that

ξt = ξ0 exp((−r − κ2/2)t− κZt),

which is lognormal, since log(ξt/ξ0) ∼ N((−r − κ2/2)t, κ2t). The
stochastic discount factor ξt is lognormal in the multi-asset case as well,
and can be used for calculations.
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Stochastic discount factor and the stock price
The stock price St = S0 exp((µ− σ2/2)t+ σZt) is also lognormal with
the same underlying noise Zt, so we can write ξ as a function of the
stock price and time:

log

ξt
ξ0

 =

−r − κ2

2

 t− κ

σ

log
St

S0

 −
µ− σ2

2

 t


= −κ

σ
log

St

S0

 +
−r − κ2

2
+

κ

σ

µ− σ2

2


 t

or equivalently,

ξt
ξ0

= eht
St

S0


−κ/σ

where

h ≡ −r − κ2

2
+

κ

σ

µ− σ2

2
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Pricing of options or a re-invested wealth process
The equation E[d(ξtPt)] = 0 has to hold for options and reinvested
wealth processes as well as for the traded assets. In particular, sup-
pose we have an option price or re-invested wealth process of the form
O(St, t) where O() is smooth and St is one-dimensional. Since dSt =
µStdt+σStdZt we have dO(St, t) = (Ot+µStOS+(σ2/2)S2

tOSS)dt+
σStOSdZt. Also, we have derived that dξ = −rξdt − κξdZt. Conse-
quently the formula 0 = µξt+µit+γi

′γξ we derived for asset n becomes

0 = −r +
Ot + µSOS + (σ2/2)S2OSS

O
− κσSOS

O

Since κ = (µ− r)/σ, this simplifies to

0 = −rO +Ot + rSOS +
σ2

2
S2OSS,

which is the Black-Scholes differential equation.
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One-shot approach (Pliska (1986)3)
If markets are complete, setting ξ0 = 1, we can restate our standard
portfolio problem as:

Given w at time 0,
choose adapted ct and wt to
maximize E[

∫ T
t=0e

−ρtu(ct)dt + e−ρTb(wT )]

st E[
∫ T
t=0ξtctdt + ξTwT ] = w.

The first-order condition for the maximum is existence of λ such that
e−ρtu′(ct) = λξt and e−ρTb′(wT ) = λξT . The solution is ct = Iu(λξte

ρt)
and wT = Ib(λξTe

ρT ). For 0 ≤ t ≤ T , we can compute the wealth wt

at time t from

ξtwt = Et[
∫ T
s=tξscsds + ξTwT ],

and compute the corresponding portfolio strategy by matching coeffi-
cients.

3Pliska, Stanley R, 1986, A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios, Mathematics of Operations
Research 11, 371-382. Popularized by Cox and Huang (1989).
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One-shot approach: simple example
For b(w) = w1−R/(1 − R), consider the terminal horizon problem
(u(c) ≡ 0) in the case of a single risky asset and fixed coefficients.
Then ξt = eht(St/S0)

−κ/σ, and we have the following problem:

Given w at time 0,
choose adapted wT to
maximize E[

w1−R
T
1−R ]

st E[ehT (ST/S0)
−κ/σwT ] = w

The first-order condition is

w−R
T = λehT (ST/S0)

−κ/σ

which implies

wT = λ−1/Re−hT/R(ST/S0)
κ/(σR).
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One-shot approach: simple example, continued
Now, we have that

wt = Et

ξT
ξt
wT



= Et

eh(T−t)
ST

St


−κ/σ

λ−1/Re−hT/R
ST

S0


κ/(σR)



=
St

S0


κ/(σR)

E

λ−1/Reh(T−t)−hT/R
ST

St


κ(1−R)/(σR)


= Q(t) (St/S0)

κ/(σR)

for some function Q(t), since ST/St is independent of St. If we want
to, we can compute Q(t) exactly (and also then λ from the expression
for w0), since log(ST/St) ∼ N((µ − σ2/2)(T − t), σ2(T − t)) and
log((ST/S0)

κ(1−R)/(σR)) = (κ(1−R)/(σR)) log(ST/S0).
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One-shot approach: simple example, continued 2
Matching the change in wealth to what would be implied by a risky asset
investment θt, we have

dwt = d(Q(t)(St/S0)
κ/(σR))

= wt((...)dt +
κ

σR
σdZt)

= rwdt + θ((µ− r)dt + σdZt)

so that matching the coefficients of dZt implies that θ = κ
σRw.
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One-shot approach: financial engineering tips
The common standard utility functions (CARA, CRRA, HARA) all have
closed forms for the inverse marginal utility function, so they are good
candidates for the one-shot approach. So do the GOBI utility4 used in
the first homework set and its close relative SAHARA utility5. I also like
using piecewise HARA utility:

u(c) =



a0 + b0
c1−R0

1−R0
for c ≤ c0

a1 + b1
c1−R1

1−R1
for c0 < c ≤ c1

...
an + bn

c1−Rn

1−Rn
for cn−1 < c

For all i, choose bi > 0 and Ri > 0, and match the derivatives to make
u(c) continuous and differentiable at the boundaries ci.

4Dybvig, Philip H., and Fang Liu, 2018, On Investor Preferences and Mutual Fund Separation, Journal of Economic Theory 174,
224–260.

5Chen, An, Antoon Pelsser, and Michel Vellekoop, 2011, Modeling non-monotone risk aversion using SAHARA utility functions,
Journal of Economic Theory 146, 2075–2092
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