Problem Set 2: Bellman Preliminaries and Covariance Matrices FIN 539 Mathematical Finance
P. Dybvig

1. Bellman Equation: preliminaries This problem does some preliminary calculations for a problem we will solve in next week's homework.

Consider the HARA (Hyperbolic Absolute Risk Aversion) felicity (or utility) function $u(c)=(c-\underline{c})^{1-R} /(1-R)$, where \underline{c} is the subsistence consumption (the minimal consumption needed to survive) and $R>0, R \neq 1$, is the relative risk aversion for the increase of consumption above the subsistence level. Then we will study the following optimization problem:

Given w_{0},
choose portfolio θ_{t}, consumption c_{t}, and wealth w_{t} to maximize $E\left[\int_{t=0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t\right]$ (expected utility of lifetime consumption) subject to:
$d w_{t}=r w_{t} d t+\theta_{t}\left((\mu-r) d t+\sigma d Z_{t}\right)-c_{t} d t$ (budget constraint)
$(\exists K \in \Re)(\forall t) w_{t} \geq-K$ (limited borrowing)
A. The Bellman equation is derived from $d M_{t}$ for a process M_{t} defined in class which gives the realized value of the objective at time t given we are following a possibly suboptimal strategy until time t and then switching to the optimal strategy from then on. One thing we will have to compute in deriving $d M_{t}$ is $d\left(e^{-\rho t} V\left(w_{t}\right)\right)$, where $V\left(w_{t}\right)$ is the value function (as yet unknown, but assumed to be twice continuously differentiable) and $d w_{t}$ is given by the budget constraint in the problem above. Use Itô's lemma to derive $d\left(\left(e^{-\rho t} V\left(w_{t}\right)\right)\right.$.

Let $f\left(w_{t}, t\right) \equiv e^{-\rho t} V\left(w_{t}\right)$. Then

$$
\begin{aligned}
d\left(\left(e^{-\rho t} V\left(w_{t}\right)\right)=\right. & d f\left(w_{t}, t\right) \\
= & f_{w} d w_{t}+f_{t} d t+\frac{1}{2} f_{w w}\left(d w_{t}\right)^{2} \\
= & \left(r w_{t} d t+\theta_{t}\left((\mu-r) d t+\sigma d Z_{t}\right)-c_{t} d t\right) e^{-\rho t} V_{w} \\
& -\rho e^{-\rho t} V d t+\frac{\theta_{t}^{2} \sigma^{2}}{2} e^{-\rho t} V_{w w} d t
\end{aligned}
$$

B. Another term in deriving $d M_{t}$ comes from taking a derivative of an integral with respect to parameters. This is ordinary calculus (Leibniz' rule), and the integral is done statewise. Compute $d\left(\int_{s=0}^{t} e^{-\rho s} u\left(c_{s}\right) d s\right) / d t$.

Only the upper limit of the integral depends on t, so the derivative is the derivative (=1) of the upper limit with respect to t times the value of the integrand at the upper limit. Therefore, we have

$$
d\left(\int_{s=0}^{t} e^{-\rho s} u\left(c_{s}\right) d s\right)=e^{-\rho t} u\left(c_{t}\right) d t
$$

C. Optimization of c at a point of time maximizes an objective function that equals $u(c)-c V_{w}$ (where $\left.u(c)=(c-c)^{1-R} /(1-R)\right)$ plus other terms that do not depend on c. Solve for the optimal c, and the maximized value of $u(c)-V_{w} c$. Note: V_{w} does not depend on c.

$$
(c-\underline{c})^{-R}-V_{w}=0
$$

so

$$
c^{*}=\underline{c}+\left(V_{w}\right)^{-1 / R} .
$$

At the optimum:

$$
\begin{aligned}
u\left(c^{*}\right)-V_{w} c^{*} & =\frac{\left(\left(V_{w}\right)^{-1 / R}\right)^{1-R}}{1-R}-\underline{c} V_{w}-\left(V_{w}\right)^{-1 / R} V_{w} \\
& =\frac{R\left(V_{w}\right)^{1-1 / R}}{1-R}-\underline{c} V_{w}
\end{aligned}
$$

D. Optimization of θ at a point in time maximizes an objective function that equals $\theta(\mu-r) V_{w}+\theta^{2} \sigma^{2} V_{w w} / 2$. Solve for the optimal θ and the maximized value of $\theta(\mu-r) V_{w}+\theta^{2} \sigma^{2} V_{w w} / 2$. Note: V_{w} and $V_{w w}$ do not depend on θ.

$$
(\mu-r) V_{w}+\theta \sigma^{2} V_{w w}=0
$$

SO

$$
\theta^{*}=-\frac{\mu-r}{\sigma^{2}} \frac{V_{w}}{V_{w w}}
$$

At the optimum:

$$
\begin{aligned}
\theta^{*}(\mu-r) V_{w}+\left(\theta^{*}\right)^{2} \sigma^{2} V_{w w} / 2= & -\frac{\mu-r}{\sigma^{2}} \frac{V_{w}}{V_{w w}}(\mu-r) V_{w} \\
& +\frac{(\mu-r)^{2}}{\sigma^{4}} \frac{\left(V_{w}\right)^{2}}{\left(V_{w w}\right)^{2}} \frac{\sigma^{2} V_{w w}}{2} \\
= & -\frac{(\mu-r)^{2}}{2 \sigma^{2}} \frac{\left(V_{w}\right)^{2}}{V_{w w}}
\end{aligned}
$$

2. Positive definite covariance matrix Suppose your client gives you the following 2×2 covariance matrix:

$$
V=\left|\begin{array}{ll}
0.0495 & 0.0505 \\
0.0505 & 0.0495
\end{array}\right|
$$

(Okay, your client is more likely to give you a defective 10×10 covariance matrix, but I want this to be easy enough to solve by hand.)
A. Compute the eigenvalues of V. (Hint: to solve for the eigenvalues of A, use the equation $\operatorname{det}(A-\lambda I)=0$.)

$$
\begin{aligned}
\operatorname{det}(V-\lambda I) & =(.0495-\lambda) *(.0495-\lambda)-.0505 * .0505 \\
& =\lambda^{2}-.099 \lambda+.0495^{2}-.0505^{2} \\
& =\lambda^{2}-.099 \lambda-.0001
\end{aligned}
$$

By the quadratic formula,

$$
\lambda=\frac{.099 \pm \sqrt{.099^{2}+4 * .0001}}{2}
$$

$$
=\frac{.099 \pm .101}{2}=.1 \text { or }-.001
$$

B. Show that V is not positive semi-definite.

Since V has a negative eigenvalue, it is not positive semi-definite.
C. Compute the normalized eigenvectors corresponding to the two eigenvalues. (Hint: use the equation $\left(A-\lambda_{i} I\right) x_{i}=0$ to solve for the i th eigenvector of A.)

Denote the first eigenvector, corresponding to $\lambda_{1}=.1$, as $x_{1}=\left(x_{11}, x_{12}\right)$. Then we have

$$
0=(V-.1 I) x_{1}=\left|\begin{array}{ll}
-0.0505 & 0.0505 \\
0.0505 & -0.0505
\end{array}\right| x_{1}
$$

so that $-.0505 x_{11}+.0505 x_{12}=0$ and therefore $x_{12}=x_{11}$. Therefore, x_{1} is proportional to $(1,1)$ and we can write it as $\left(x_{11}, x_{11}\right)$. To normalize it, $x_{11}^{2}+x_{11}^{2}=1$, so we can take $x_{11}=1 / \sqrt{2}$ (choosing a factor $-1 / \sqrt{2}$ would do just as well) and therefore $x_{1}=(1,1) / \sqrt{2}$.

Similarly, denote the first eigenvector, corresponding to $\lambda_{1}=-.001$, as $x_{2}=$ $\left(x_{21}, x_{22}\right)$. Then we have

$$
0=(V-(-.001) I) x_{2}=\left|\begin{array}{ll}
0.0505 & 0.0505 \\
0.0505 & 0.0505
\end{array}\right| x_{2}
$$

so that $.0505 x_{21}+.0505 x_{22}=0$ and therefore $x_{22}=-x_{21}$. Therefore, x_{2} is proportional to $(1,-1)$ and we can write it as $\left(x_{21},-x_{21}\right)$. To normalize it, $x_{21}^{2}+x_{21}^{2}=1$, so we can take $x_{21}=1 / \sqrt{2}$ (choosing a factor $-1 / \sqrt{2}$ would do just as well) and $x_{2}=(1,-1) / \sqrt{2}$.
D. Change any negative eigenvectors to 0.0001 and compute the new covariance matrix. (Hint: used the normalized eigenvectors and the formula $\left.V=X^{\prime} \Lambda X.\right)$

Let

$$
X \equiv \frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right|
$$

and let

$$
\hat{\Lambda} \equiv\left|\begin{array}{ll}
.1 & 0 \\
0 & .0001
\end{array}\right|
$$

be the diagonal matrix with the new eigenvalues on the diagonal. Then the new covariance matrix is

$$
\begin{aligned}
\hat{V} & =X \hat{\Lambda} X^{\prime} \\
& =\frac{1}{2}\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|\left|\begin{array}{ll}
.1 & 0 \\
0 & .0001
\end{array}\right|\left|\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right| \\
& =\left|\begin{array}{ll}
0.05005 & 0.04995 \\
0.04995 & 0.05005
\end{array}\right|
\end{aligned}
$$

