Problem Set 3: Homotheticity and Bellman Equation
FIN 539 Mathematical Finance
P. Dybvig

1. Homotheticity Consider the HARA (Hyperbolic Absolute Risk Aversion) felicity (or utility) function $u(c)=(c-\underline{c})^{1-R} /(1-R)$, where \underline{c} is the subsistence consumption (the minimal consumption needed to survive) and $R>0, R \neq 1$, is the relative risk aversion for the increase of consumption above the subsistence level. Then we will study the following optimization problem:

Given w_{0},
choose portfolio θ_{t}, consumption c_{t}, and wealth w_{t} to maximize $E\left[\int_{t=0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t\right]$ (expected utility of lifetime consumption) subject to:
$d w_{t}=r w_{t} d t+\theta_{t}\left((\mu-r) d t+\sigma d Z_{t}\right)-c_{t} d t$ (budget constraint)
$(\exists K \in \Re)(\forall t) w_{t} \geq-K$ (limited borrowing)
Prove that the value function for this problem is of the form $V(w) \equiv(w-$ $\underline{c} / r)^{1-R} v$ for some constant v. Assume that $w_{0}>\underline{c} / r$ so there is enough wealth to pay for subsistence consumption with something left over. (Hint: note that wealth of \underline{c} / r can be thought of as being committed to funding the subsistence consumption \underline{c} so "free" or "discretionary" wealth at t is $w_{t}-\underline{c}$. Define new choice variables: portfolio choice $\hat{\theta} \equiv \theta_{t} /\left(w_{0}-\underline{c} / r\right)$ normalized by initial free wealth, consumption $\hat{c}_{t} \equiv\left(c_{t}-\underline{c}\right) /\left(w_{0}-\underline{c} / r\right)$ in excess of the subsistence consumption, normalized by initial free wealth, and free wealth $\hat{w}_{t} \equiv\left(w_{t}-\underline{c} / r\right) /\left(w_{0}-\underline{c} / r\right)$ normalized by initial free wealth.)
2. Bellman Equation Consider the optimization problem in Problem 1. (Note: this problem can be solved even if you did not solve Problem 1.)
A. Write down the martingale M_{t} for this problem.
B. What does M_{t} represent given the optimal policies for portfolio, consumption, and wealth? What does M_{t} represent given suboptimal policies? For $t>s$, what is $E\left[M_{s}\right]-E\left[M_{t}\right]$?
C. Derive the Bellman equation for this problem.
D. Solve for optimal c_{t} and θ_{t} in terms of derivatives of V, and substitute the optimized values into the Bellman equation.
E. From Problem 1, we can write the value function in the form $V(w)=$ $\frac{k}{1-R}(w-c / r)^{1-R}$, where $k=(1-R) v$. Using this formula, solve for the optimal c_{t} and θ_{t} in terms of w_{t} and the parameters.
F. Solve the Bellman equation for k.

